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통계적 앙상블 해석과 측정의 문제

1)

김 재 영
†

양자역학의 해석에서 통계적 앙상블 해석(SEI)을 검토한다. 막스 보른의 통계

적 해석을 역사적 맥락에 따라 상세하게 살펴보고, 보른이 확률의 개념을 어떻

게 사용했는지 논의한다. 나아가 아인슈타인이 보른의 논의와 관련하여 제시한 

앙상블 해석을 검토한 뒤, 이를 확장한 통계적 앙상블 해석을 상세하게 다룬다. 

특히 상태의 준비와 측정을 상세히 논의하고, 덧붙여 통계적 해석과 ‘서울 해

석’(SI)의 관계에 대한 함의를 모색한다. 

【주요어】통계적 앙상블 해석(SEI), 보른의 통계적 해석, 상태의 준비, 측
정, 서울 해석(SI) 
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1. 서론

양자역학의 여러 해석들은 실질적으로 막스 보른의 파동함수 해석을 해

석이 아닌 수학적 형식체계 속에 포함시킨다. 보른의 해석규칙은 소위 파

동함수의 제곱을 확률로 해석하는 것이다. 그러나 가령 보른이 노벨상 수

상연설의 제목을 “양자역학의 통계적 해석”이라고 붙인 것을 어떻게 이해

해야 할까? 

흔히 아인슈타인의 “신이 주사위 놀이를 하지 않는다.”라는 말은 양자역

학의 확률적 서술에 대한 부정이며, 라플라스주의 결정론을 옹호한 것이자 

양자역학이 최종이론이 아니라는 믿음을 피력한 것으로 간주된다. 그러나 

아인슈타인은 1905년의 빛양자 가설을 비롯하여 박사학위논문에서부터 이

미 맥스웰-볼츠만의 기체분자운동론과 통계역학의 확률 개념을 매우 적극

적으로 사용했다. 가령 아인슈타인의 흑체복사공식 유도 과정은 명시적으

로 확률 개념에 의존한다. 아인슈타인이 확률 개념을 매우 중요시 여겼다

는 점은 분명하다. 양자역학의 해석에 대한 아인슈타인의 기여는 1935년의 

‘아포로’ 논문에서 끝난 것이 아니라, 밸런타인이 주축이 되는 통계적 앙상

블 해석(Statistical or Ensemble Interpretation, 이하 SEI)을 통해 그 맥

이 이어지고 있다. 

이 논문은 보른의 통계적 해석으로부터 SEI로 이어지는 과정을 역사적

인 맥락을 고려하여 다시 검토하고, 이를 통해 SEI가 양자역학의 해석에 

대해 가지는 대안적 함의를 밝히는 데 목표를 두고 있다. 나아가 SEI가 양

자역학에 대한 대안적 해석, 특히 ‘서울해석’과 어떻게 연관될 수 있는가 

기초적인 논의를 전개하고자 한다. 

다음 절에서는 보른의 통계적 해석을 역사적 맥락에 따라 상세하게 살펴

보고, 보른이 확률의 개념을 어떻게 사용했는지 논의한다. 나아가 아인슈타

인이 보른의 논의와 관련하여 제시한 앙상블 해석을 간단하게 검토한 뒤, 

그 다음 절에서 본격적으로 밸런타인이 주축이 된 통계적 앙상블 해석을 

상세하게 다룬다. 그 다음 절에서는 상태의 준비와 측정을 상세하게 논의

한다. 끝으로 통계적 해석과 서울 해석의 관계라는 맥락에서 논의함으로써 

서울 해석이 통계적 해석과 쉽게 연결될 수 있는 개연성을 보인다. 
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2. 보른의 통계적 해석

새로운 이론을 제안한 사람들은 어떤 식으로든 자신의 새로운 이론을 정

당화하고 더 정확하고 포괄적인 해석방법을 함께 제안하기 마련이다. 비록 

초기 주창자들의 생각이 끝까지 모두 살아남는 것은 아니지만, 만일 지금

까지 살아남은 것이 있다면 그럴만한 충분한 이유가 있기 때문일 것이다.

지금까지 살아남은 것이 무엇인지 찾아보려면, 여러 가지 다양한 대안적 

해석들에도 불구하고 모든 해석들이 공통으로 견지하는 기준이 무엇인지를 

이해하는 것이 좋다. 어떤 해석을 취하더라도 그것이 다른 것이 아닌 “양

자역학의 해석”이 되기 위해 갖추어야 할 요소는 무엇일까? 슈뢰딩거 방정

식이나 힐버트 공간을 사용해야 한다는 것은 양자역학의 형식체계로서의 

기본 요소이므로, 해석과 관련된 문제는 아니라고 할 수 있다. 그 다음으로 

떠오르는 것은 바로 보른의 확률적 해석규칙이다. 

(보른의 해석규칙 1)

모든 관측가능한 물리량에 대하여 힐버트 공간 H에서 작용하는 

자기수반 연산자가 대응되며, 그 관측값은 항상 그 연산자의 고유

값 중 하나가 되는데, 대상계가 크기 1인 힐버트 공간 H의 벡터 

로 기술되는 상태에 있을 때, 관측결과가 특정의 고유값 a가 될 

확률은

Pr 〈〉
으로 주어진다. 여기에서 〈⋅⋅〉는 H에 정의된 내적이며, 는 

고유값 에 대응되는 고유벡터이다.

더 간접적이지만 알아보기 쉬운 형태로는 다음과 같이 말할 수 있다.

(보른의 해석규칙 2)

대상계가 크기 1인 힐버트 공간 H의 벡터 로 기술되는 상태에 

있을 때, 관측가능한 물리량에 대응하는 자기수반 연산자가 라면, 
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그 물리량의 기댓값은 

〈〉
으로 주어진다. 

보른의 해석규칙이 1926년에 처음 나타났을 때에는 형식체계의 일부로 

제안된 것이 아니라, 여러 가능한 해석 중 하나로 제안된 것이다. 1954년 

72세의 보른에게 뒤늦은 노벨물리학상을 안겨 준 공식적인 업적도 “그의 

양자역학에 대한 근본적인 연구, 특히 파동함수에 대한 그의 통계적 해석”

이었다. 그러나 보른의 확률적 해석은 점차 모든 양자역학의 연구자들이 

동의하는 원론적인 해석으로 수용되기 시작했고, 대개 양자역학의 표준으

로 간주되는 디랙의 뺷양자역학의 원리들뺸(1930)과 폰노이만의 뺷양자역학

의 수학적 기초뺸(1932)에서 모두 가장 핵심적인 해석규칙으로 정립되었

다.1)

보른의 확률적 해석이 어떻게 모든 해석들에 공통된 해석규칙이 된 것일

까? 잘 알려져 있듯이, ‘양자역학’(Quantenmechanik)이란 용어를 처음 만

들어내고 사용한 사람은 다름 아니라 막스 보른이다. 물론 그 이전부터 ‘양

자가설’이란 말이 사용되기도 했고, 보어-조머펠트 이론을 ‘양자이

론’(Quantentheorie)으로 지칭하기도 했지만, 이를 ‘역학’의 수준으로 끌어

올려 사실상 새로운 이론체계로 제시한 것은 보른의 공로이다. 

이제 우리가 할 일은 내부결합이나 외부의 장이 일으키는 역학계의 섭

동에 관한 고전적인 법칙들을 단일한 형식으로 바꾸는 것이다. 이는 

고전역학으로부터 ‘양자역학’으로의 형식적인 변화를 강하게 암시하는 

것이다. 이에 대하여 양자규칙들 자체는 본질적으로 달라지지 않을 것

이다. 작용양자 의 배수는 (중략) 비섭동계의 작용적분에 그대로 나

타날 것이다. 한편 역학 자체는 변화를 겪을 것이다. 즉 미분방정식이 

차분방정식으로 전이한다는 뜻이다.2) 

즉 보어-조머펠트의 고전양자이론이 전자가 여러 개인 원자에 대해 거

 1) Dirac (1930), von Neumann (1932).

 2) Born (1924).
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의 설명력을 갖지 못하는 등의 문제가 드러남에 따라, 이러한 양자규칙들

을 명실 공히 역학의 수준으로 확장하고 체계화하여 새로운 역학을 만들어

야 한다고 주장한 것이다. 이후 양자역학의 실제적인 모습으로 제안된 행

렬역학은 보른의 연구계획 속에서 진행된 것이라고 말할 수 있다.3) 왜냐하

면 하이젠베르크, 요르단, 파울리는 모두 보른의 지도를 받고 있었고, 구체

적인 계산을 하고 새로운 아이디어를 꺼내기도 했지만, 이를 정리하고 종

합한 것은 언제나 보른이었기 때문이다. 그러나 이렇게 만들어진 새로운 

역학으로는 입자의 산란(충돌)과 같은 현상을 서술하기가 매우 불편했다. 

슈뢰딩거의 파동역학이 발표되었을 때 이를 가장 열렬하게 환영한 것은 

보른이었다. 슈뢰딩거의 “고유값 문제로서의 양자화”의 연속논문 중 네 번

째 논문과 거의 동시에 보른은 슈뢰딩거의 파동함수에 대한 적절한 해석을 

제시하는 논문을 제출했다.4)

슈뢰딩거 자신은 파동 방정식에서 유도되는 연속방정식을 바탕으로 “어

떤 의미에서 원자의 정전기 및 정자기 모형을 말할 수 있다”라고 적고 있

다. 즉,   는 전자의 전하밀도를 나타낸다는 것이다. 그러나 이렇게 

파동함수가 실재적인 파동을 나타내는 것으로 보는 환원주의적 해석은 심

각한 개념적 문제를 만난다. 파동함수가 전자와 같은 입자를 나타내려면 

파동다발(波速, wave packet)이 되어야 하는데, 특별한 조건이 갖추어지

지 않는 한 대부분의 파동다발은 짧은 시간 안에 흩어져 평면파가 되어 버

린다. 게다가 이 파동함수가 정의되는 공간의 차원이 문제가 된다. 자유도

가 1이라면 와 같이 실재적인 파동으로 볼 수도 있지만, 가령 

자유도가 2라면 와 같이 7차원 시공간에서 정의된 

파동이 되므로 실재적인 파동으로 보는 것이 힘들어진다. 뿐만 아니라 이 

파동함수는 복소수 값을 취하는데, 복소수가 왜 나오는지 이해하기 어렵나. 

또한 측정의 과정에서 파동함수의 오그라듦이 있다는 것을 파동이 오그라

 3) Heisenberg (1925), Born and Jordan (1925), Born, Heisenberg and 

Jordan (1925), Pauli (1926).

 4) Schrödinger (1926)이 투고된 것은 1926년 6월 21일이었고, Born (1926a)

이 투고된 것은 6월 25일이었다. 더 명료한 보른의 확률적 해석규칙은 

Born (1926b) (7월 21일 투고) 참조.
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드는 것으로 해석할 경우 비인과성과 불연속성의 문제를 피할 수 없다. 특

히 이 파동함수는 측정과 관련된 물리량이 무엇인가에 따라 달라지는데, 

측정과정에서 어떤 물리량을 선택하는가에 따라 파동이 달라진다는 것은 

납득할 수 없는 일이다.5)

보른이 슈뢰딩거의 환원주의적 해석이 당면한 난점들을 해결하려고 한 

것은 아니지만, 슈뢰딩거의 파동역학을 이용하여 입자 산란을 계산하는 과

정에서 자연스럽게 파동함수의 의미를 정확하게 해석해야 하는 상황에 직

면하게 된다. 보른은 노벨물리학상 수상연설에서 처음부터 슈뢰딩거의 파

동역학이 ‘파동’을 서술하고 있는 것이 아님을 알고 있었다고 말했다. 전자

기장의 세기와 빛 양자의 밀도 사이의 관계로부터 “거의 자명하게” 

가 확률임을 알아챘다는 것이다.6) 그러나 이러한 보른의 사후진술과 달리 

파동함수를 확률밀도함수와 연결시키는 과정은 상당한 개념적 변천을 겪었

다고 보는 것이 옳다. 벨러는 이에 대하여 다음 여섯 가지를 설득력 있게 

논증한다.7) 

첫째, 보른의 확률적 해석은 상당한 기간 동안 점점 모습이 갖추어진 개

념적 기여이다. 이 기간 동안 보른의 아이디어는 슈뢰딩거, 하이젠베르크, 

파울리 등과의 대화를 통해 심각한 변화를 겪었다. 형성단계에서 보른의 

주장들은 유연하고 모호하며 어느 한 가지에 매어있지 않았다.

둘째, 보른의 첫 번째 충돌 논문[6월 25일 투고]은 보른의 사후진술과 

달리 슈뢰딩거의 파동에 반대하기 위해 쓴 것이 아니었다. 보른은 처음에 

슈뢰딩거와의 논쟁에 전혀 연루되지 않았다. 사실상 보른은 슈뢰딩거의 논

문에 매우 열광적이었으며, 이는 해석의 가능성에 대해서도 마찬가지였다. 

보른은 입자에 대한 강한 ‘믿음’을 갖고 있지 않은 것으로 보인다. 보른은 

입자-파동 이중성 문제에 확실한 입장을 갖고 있지 않았다.

셋째, 보른의 첫 번째 충돌 논문은 해석의 쟁점을 명료하게 하기 위한 

 5) Jammer (1974), esp. pp. 21-38.

 6) 더 상세한 것은 Mehra and Rechenberg (1987) 참조. 1920년대 중반의 보

른의 상황에 대한 상세한 서술로 Greenspan (2005) esp. pp. 129-49, 

Bernstein (2005) 참조.

 7) Beller (1990, 1999).
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것이 아니라 특정한 물리학 문제를 풀기 위한 것이었다. 즉 새로 제안된 

파동역학 이론을 써서 충돌 문제를 풀어내려는 것이었다.

넷째, 보른의 충돌에 관한 두 논문의 목표는 입자가 실재한다거나 비결

정론이 필수불가결함을 밝히는 것이 아니었다. 오히려 보어의 ‘양자 도약’

(즉 충돌 과정에서 원자에 나타나는 띄엄띄엄 떨어진 에너지 변화)이라는 

개념을 이론적으로 내용 있게 하고 제대로 서술하려는 것이었다. 보른과 

슈뢰딩거 사이의 불일치 대부분의 핵심은 입자-파동 이중성 딜레마나 비결

정론에 있었던 것이 아니라 이러한 양자 도약의 존재에 놓여 있었다. 

다섯째, 슈뢰딩거의 파동함수에 대한 확률적 해석, 즉 가 위치의 확률

이 된다는 해석은 가 자유로운 입자의 운동을 서술한다는 비교적 명확한 

암시에서 발전된 것이 아니라 오히려 파동함수가 속박계에서 어떻게 해석

되어야 하는가 하는 문제에서 비롯한 것이다. 이 원자의 정상상태에 대

한 확률을 준다는 보른의 해석은 결정적인 기여였으며, 이를 중심으로 비

결정론과 입자 존재론의 쟁점들이 정립된 것이다. 

여섯째, 보른의 독창적인 확률해석이 새로운 물리철학의 등장에 중심적

인 역할을 한 까닭은 그것이 ‘명백하게’ 옳았기 때문이 아니라 오히려 그것

이 낳은 모호함, 난점, 역설들 때문이었다. 이러한 문제들을 해결하려는 과

정에서 이전의 개념들이 점점 수정되었고 새로운 이론적 및 철학적 개념들

을 다듬어나갈 수 있게 되었던 것이다. 

1926년에 보른은 충돌과 관련된 두 편의 논문을 발표했는데, 6월 25일

에 투고한 첫 번째 논문에서는 충돌 후의 파동함수를 


    




     


   sin   

와 같이 유도한 뒤에 다음과 같이 말하고 있다. 

이 결과를 입자로 재해석한다면, 한 가지 해석만이 가능하다.8) 즉 


   는   방향으로 오는 전자가 각   로 정해지는 

 8) Born (1926a), p. 865.
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방향(과 위상차 )으로 던져질 확률이다. 여기에서 전자의 에너지 는 

양자 하나 
 만큼 늘어나고 원자의 에너지는 그만큼 줄어든다. [교

정주석: 더 정확하게 고찰하면 확률은 
 의 제곱에 비례함을 알 수 

있다.](Born 1926, 805. 강조는 인용자)

즉 파동함수를 확률로 해석해야 한다는 것은 곧 이 풀이를 “입자로 재해

석하는” 경우에 해당한다. 하지만 보른은 이 논문에서 왜 파동함수를 확률

로 해석해야 하는지를 명확하게 설명하고 있지 않다. 사후진술에서는 전자

기장의 세기와 빛 양자의 밀도 사이의 관계로부터 이 점을 즉시 알아챘다

고 했지만, 만일 그 말이 사실이라면 논문에서 제곱이 아니라 
 가 확률

이라고 말하지 않았을 것이다. 논문이 출판되기 직전의 교정을 보는 과정

에서야 제곱이 확률에 비례한다고 주석을 달았다는 점은 보른 자신이 분명

한 답을 갖고 있지 않았음을 암시한다.

두 번째 충돌 논문[7월 21일 투고]에서는 체계적이고 정리된 문장으로 

파동함수에 대한 확률적 해석을 서술하고 있다.

임의의 함수 를 고유함수로 전개하면 다음과 같다. 

 


  (3)

이제까지는 고유진동 과 고유값 에 관심을 두었다. 우리가 서

론에서 제시한 표상은 (3)식으로 표현된 중첩함수가 확률과 관련되어 

있다는 생각에 가깝다. 그 확률이란 상호작용이 없는 원자의 무리에 

대하여 상태가 특정한 빈도로 나타날 확률이다.

  완전성 관계식

 





은 이 적분을 원자의 수로 볼 수 있음을 말해 준다. 왜냐하면 어떤 단

위화된 고유진동의 값은 1 (또는 상태의 선험적 비중이 1)이고, 


은 상태 의 빈도를 의미하며, 전체 갯수는 부분들의 합이 되기 때문

이다. 9)

 9) Born (1926b), 805. 강조는 인용자.
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그런데 이번에는 ‘입자’라는 용어를 애써 피하고 있다. 오히려 슈뢰딩거의 

형식체계를 거의 그대로 가져와서 ‘고유진동’과 ‘고유값’이란 용어를 중심으

로 논의를 전개하고 있다. 논문의 뒷부분에서는 에너지밀도의 공간적분



grad  

(단,     )으로 정의된 전체 에너지 가 







으로 주어짐을 보이고, 


에 대한 우리의 의미에 비추어 보면, 오른쪽 항은 원자계의 전체 

에너지의 평균값이다.10) 

와 같이 말하고 있다. 즉 전체 에너지의 평균값이 고유값 들의 기대값

이 되고, 그 확률은 다름 아니라 
이 된다는 것이다. 

보른이 입자에 대한 존재론적 규정을 염두에 두고 있지 않다는 점은 두 

번째 논문의 초록에서도 확인할 수 있다.

양자역학의 슈뢰딩거 형식은 자연스러운 방식으로 한 상태의 빈도를 

해당하는 고유진동의 세기의 도움을 받아 정의할 수 있게 해 준다. 이

러한 이해는 충돌과정의 이론으로 이어지는데, 그 이론에 따르면, 전이

확률이 비주기 풀이의 점근 거동을 통해 결정된다.11)

보른이 전이확률을 계산하는 대상은 입자라기보다는 고유진동이다. 이 

점을 더 정확히 보려면 첫 번째 논문의 초록을 비교해 보는 것이 좋다.

10) Ibid., p. 806.
11) Ibid., p. 803.
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충돌과정의 논의를 통해, 슈뢰딩거 형식의 양자역학이 정상상태뿐 아니

라 양자도약도 기술할 수 있다는 이해를 설명한다.12)

단 한 문장으로 되어 있는 이 초록에서는 양자도약을 어떻게 기술할 것

인가 하는 문제가 가장 중요한 관심사임을 잘 보여준다. 보른 자신이 하이

젠베르크와 요르단과 더불어 만들어낸 ‘양자역학’(즉 행렬역학)은 정상상태

에 대해서는 제대로 된 역학으로서 잘 작동했지만, 행렬역학을 이용하여 

양자도약을 서술하는 것은 거의 불가능했다. 보른은 슈뢰딩거가 제안한 또 

다른 형식의 ‘양자역학’(즉 파동역학)이 양자도약 문제를 잘 기술함을 보이

면서, 그 다음 논문에서 이를 정상상태들 사이의 전이확률

(Übergangswahrscheinlichkeit)로 이해하자고 제안하는 것이다. 그런데 

정상상태는 다름 아니라 고유진동이며, 전이확률과 관련된 것이 바로 상태

의 빈도(Häufigkeit des Zustandes)이다. 그렇다면 첫 번째 논문에서 입

자는 어떤 의미로 서술된 것일까? 그에 대한 실마리는 다음의 구절에서 드

러난다.

슈뢰딩거에 따르면, 번째 양자상태의 원자는 전체 공간에서 일정한 

진동수 


를 갖는 진동 과정이다.13) 

첫 번째 논문에서도 보른은 입자 대신 슈뢰딩거의 파동을 곧이곧대로 수

용하고 있었다. 행렬역학의 존재론적 모형은 자연스럽게 입자였으나, 슈뢰

딩거의 파동역학을 받아들인다면 이러한 입자의 존재론적 모형을 고집할 

필요는 없었다. 벨러의 분석에 따르면, 보른 자신도 입자와 파동의 이중성 

문제에 대해 명료한 입장을 가지고 있지 않았으며, 수학적 형식체계를 중

요하게 여겼던 보른은 존재론적으로 입자나 파동 어느 한 쪽에 국한되지 

않는 확률의 해석을 제안한 셈이 되었다. 

이것이 가능했던 것은 보른의 확률적 해석이 오히려 불분명한 면을 지니

고 있어서 어느 틀에나 쉽게 가져올 수 있었기 때문이었다. 만일 보른의 

12) Born (1926a), p. 863.
13) Ibid., p. 864.
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해석이 존재론적 모형에서나 함축에서 더 선명하고 명료한 입장을 택하고 

있었더라면, 이 또한 이후의 여러 해석들 중 하나로 자리를 잡아갔을 것이

다. 그러나 보른의 확률 해석은 가령 코펜하겐 해석에서 중심이 되었던 상

보성 원리나 불확정성 원리와 달리 실질적으로 수학적 형식체계에 더 가까

웠다. 파동함수를 실재로서의 파동으로 보든, 슈뢰딩거 방정식이 입자를 서

술하는 것이라고 보든, 그 수학적 함수나 전개계수의 제곱이 확률을 의미

한다고 하면, 현상과 직접 연결되는 해석규칙이 마련된다. 이렇게 하여 보

른의 확률적 해석은 양자역학에 대한 다양한 해석들 중 하나가 아니라 모

든 해석들이 포함해야 할 공통된 해석규칙이 되었다.

폰노이만은 막스 보른에서 비롯한 “통계적 표현을 자연법칙의 실제 형식

으로 받아들이고 인과성의 원리를 포기하는 양자역학의 견해”가 바로 ‘통

계적 해석’(statistische Deutung)이며, 이것이 “일관되게 추구할 수 있는 

유일한 양자역학의 해석”이라고 말하고 있다.14) 

그런데 보른은 ‘확률’(Wahrschelnlichkeit)이란 용어를 어떤 의미로 사

용한 것일까? 그리고 “슈뢰딩거 형식의 양자역학이 정상상태뿐 아니라 양

자도약도 기술할” 수 있다는 보른의 주장에 따른다면, 측정의 과정에서 일

어나는 듯이 보이는 상태의 불연속적인 변화를 어떻게 이해해야 할까? 처

음 슈뢰딩거가 생각했던 것처럼 파동역학의 파동이 실제 공간 속의 파동이 

아니라면, 그 파동은 도대체 무엇이며, 보른이 말하는 ‘전이확률’은 무슨 의

미일까?

보른은 아인슈타인 책을 받은 뒤, 그에 대한 답장으로 1950년 9월 4일에 

아인슈타인에게 보낸 편지에서 다음과 같이 말하고 있다.

“두 번째 화제는 의 해석에 관한 것입니다. (중략) 가 하나의 단일

한 계의 ‘상태’를 서술한다고 말하는 것은 마치 일상생활에서 ‘나이가 

67살인 내 기대수명은 4.3년이다.’라는 말과 같은 그냥 일종의 표현입

니다. 물론 진짜 그 말이 의미하는 바는 67살인 모든 개별적인 사람들

을 택해서 이들이 몇 년을 더 살 것인지를 계수해서 백분율을 정하는 

것입니다. 이것이 줄곧 을 어떻게 해석할 것인가에 대한 내 자신

의 개념이었습니다. 이와 달리 당신은 많은 수의 똑같은 계들, 즉 통계

14) von Neumann (1932) p. 109, (1955) p. 210.
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적 앙상블(statistische Gesamtheit) 속의 하나의 계를 제안하고 있습

니다. 내가 보기에는 그 둘의 차이는 본질적인 것이 아니라 언어의 문

제일 뿐입니다. 아니면 내가 오해하고 있는 건가요? 당신은 뭔가 더 

근본적인 것을 말하고 있는 건가요? 우리가 이 문제를 놓고 합의점에 

이를 수 있다면 ‘불완전함’에 관한 질문에서도 합의점에 이를 수 있을 

겁니다.”(보른 아인슈타인 서신 교환 #96, 독일어판 S. 250, 영어판 

p. 182, 한국어판 p. 347.)

보른과 아인슈타인의 확률 개념은 어떻게 달랐던 것일까? 아인슈타인은 

왜 통계적 앙상블이란 개념을 제안한 것일까? 이 질문에 대한 답은 1949

년에 출판된 쉴프의 뺷철학자-과학자 알버트 아인슈타인뺸에 있는 아인슈타

인의 “비판에 대한 응답”에서 찾을 수 있다.

“대략 말해서 결론은 다음과 같다. 통계적 양자이론의 틀 안에서 개별 

계의 완전한 서술 같은 것은 없다. 더 주의하여 말하면 다음과 같을 

것이다. 양자이론의 서술을 개별계의 완전한 서술로 보려 하면 부자연

스러운 이론적 해석들에 맞닥뜨리게 된다. 만일 그 서술이 개별계가 

아니라 계들의 앙상블에 대한 것이라는 해석을 받아들이면, 부자연스러

운 이론적 해석들은 즉시 불필요해진다.”15) (Schilpp 1949, pp. 671-2)

이 대목에 앞서 아인슈타인은 슈뢰딩거의 고양이 사고실험을 재구성하여 

논의하고 있다. 아인슈타인의 판본에는 고양이 대신 가이거 계수기가 나온

다. 가이거 계수기는 방사성 원소의 변환과정을 자동으로 기록하는 장치이

다. 방사성 원소가 붕괴되거나 붕괴되지 않거나 두 가지 가능성이 있으므

로, 가이거 계수기에도 자국이 생기거나 생기지 않거나 두 가지 가능성이 

있다. 방사성 원소의 붕괴 여부와 달리 가이거 계수기의 기록-띠에 자국이 

남는지 여부는 거시적 개념의 영역 안에 속해 있는 사실이며, 직접 확인할 

수 있다. 만일 “양자이론의 서술이 개별 계의 완전한 서술이라는 해석을 유

지한다면, 띠에 남은 자국의 위치가 계 그 자체에는 속하지 않으면서도 자

국의 존재는 근본적으로 기록-띠에 관찰을 수행하는가 여부에 따라 달라진

다는 해석을 받아들일 수밖에 없게 된다.” 아인슈타인의 논리는 일종의 귀

15) Einstein (1949), p. 665.
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류법이다. 양자역학의 확률을 개별계에 대한 것이라고 하면 납득하기 힘든 

상황에 이르게 되기 때문에 양자역학의 확률을 계들의 앙상블에 대한 것이

라는 결론을 내린다. 이런 접근은 이미 1936년에도 피력했던 것이다. 

“그러므로 내가 보기에는 양자이론에 대한 보른의 통계적 해석만이 유

일하게 가능한 것임이 분명하다.   함수는 어떤 식으로도 단일한 계

의 상태일 수 있는 상태를 기술하지 않고, 오히려 많은 계들, 즉 통계

역학의 의미로 ‘계들의 앙상블’과 관련된다. 만일 어떤 특별한 경우를 

제외하고   함수가 측정할 수 있는 양에 관한 ‘통계적’ 데이터만을 마

련해 준다면, 그 이유는 측정의 조작이 미지의 요소들을 도입하게 되

고 이는 통계적으로만 파악할 수 있다는 사실에만 있는 것이 아니다. 

이는 또한   함수가 어느 의미로도 하나의 단일한 계의 상태를 서술

하지 않는다는 사실 때문이다.”16) 

다시 말해서, 슈뢰딩거를 따라 ‘얽힘’을 고려하면, 방사성 원소와 가이거 

계수기의 상태는 다음과 같이 변화할 것이다.

〉 〉⊗〉  ⇒ 〉⊗〉 〉⊗〉
여기에서 {〉 〉}은 각각 방사성 원소가 붕괴하거나 붕괴하지 않는 

상태를 가리키며, {〉 〉 〉 }은 각각 가이거 계수기가 중립인 상

태, 기록-띠에 자국이 남는 상태, 기록-띠에 자국이 남지 않는 상태를 가리

킨다.17) 아인슈타인의 주장은

16) Einstein (1936), 독일어본 S. 313, 영어본 p. 349. Einstein (1950)에 재수

록. 아인슈타인의 양자역학 해석과 관련하여 더 상세한 것은 Ballentine 

(1972) 참조. 
17) 엄밀하게 말하면 {〉 〉}은 측정되는 물리량의 두 고유값에 대응하는 

고유상태이며, ‘상태’를 말할 때 방사성 원소가 붕괴한다거나 가이거 계수기

의 기록-띠에 자국이 남는다는 식의 표현은 혼동을 일으키기 쉽다. 실제로

는 슈테른-게를라흐 장치나 마흐-젠더 간섭계처럼 스핀이나 편광의 두 상

태로 보는 것이 더 낫지만, 편의상 아인슈타인의 논의에 맞추어 논의를 전

개한다.



김 재 영86

  

〉⊗〉 〉⊗〉 ⇒ 〉⊗〉또는 〉⊗〉
의 과정을 단일한 계에 대한 서술로 봐서는 안 된다는 것이다. 방사성 원

소와 가이거 계수기가 연결되어 있는 계가 수없이 많이 있다면, 그 중 일

부는 가이거 계수기의 기록-띠에 자국을 남겼을 것이고 나머지는 그렇지 

않을 것이다. 그 확률 분포는 
 

으로 주어진다. 

양자역학의 계산결과는 이러한 확률분포를 정확하게 줄 수 있고, 관찰이

나 측정이 대상계의 상태를 바꾼다거나 하는 일은 일어나지 않는다. 여기

에서 납득할 수 없는 신기한 일은 없다. 1926년에 보른에게 “신은 주사위 

놀이를 하지 않는다고 믿는다.”라고 썼던 아인슈타인은 10년 뒤에 여전히 

확률에 대한 고찰을 멈추지 않았다. 신은 주사위 놀이를 하지 않더라도, 양

자역학이라는 이론을 사용하는 물리학자는 앙상블에 대한 통계적 확률분포

로 만족해야 한다는 것이다. 아인슈타인은 볼츠만의 뺷기체론 강의뺸에 강한 

영향을 받았으며, 기체분자운동론을 사용하여 열역학을 뉴턴역학과 연결시

키는 데에 큰 관심을 가지고 있었다. 따라서 자연스럽게 통계역학의 기초

와 관련된 논의를 활발하게 전개했다. ‘통계역학’이란 용어를 만들고 앙상

블 개념을 발전시킨 것은 깁스(Josiah Willard Gibbs)이다.18) 아인슈타인

이 1902년부터 발표한 세 편의 논문을 통해 깁스와 독립적으로 통계역학의 

토대를 제안한 것은 거의 알려져 있지 않다.19) 아인슈타인은 물리학 이론

의 전개에서 통계역학과 확률의 방법을 중요하게 여겼다. 

아인슈타인이 생각한 확률은 대체로 볼츠만의 확률 개념에서 벗어나지 

않았던 것으로 보인다. 깁스는 앙상블을 “본성상 똑같지만 위상, 즉 배열과 

속도에 관한 조건에서는 다른 아주 많은 수의 독립된 계들”로 정의한다.20) 

18) Gibbs (1902). 아인슈타인이 깁스의 연구를 읽은 것은 독일어 번역판을 통

해서였다. Zermelo (1905).
19) Einstein (1902, 1903, 1904, 1905, 1911). 통계역학의 기초에 관한 아인슈타

인과 깁스의 차이는 가령 Navarro (1998) 참조.
20) “… a great number of independent systems, identical in nature, but 

differing in phase, that is, in their condition with respect to 

configuration and velocity” Gibbs (1902), p. 5.
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깁스에게는 앙상블(ensemble) 개념이 확률이라는 개념을 동역학의 관점에

서 직관적으로 이해하기 쉽게 하려는 것이었다면, 아인슈타인에게 앙상블

(Gesamtheit)은 주어진 거시 상태(개괄 상태)와 상응하는 여러 가지 미시 

상태(개별 상태)를 말하는 것이었으며, 확률의 개념은 대체로 폰미제스와 

같은 빈도 해석에 기반을 두고 있었다.21) 이 점에 관해서는 보른도 마찬가

지였다. 그러나 양자역학의 상황에서는 확률 개념을 개별적인 계에 적용할 

수 있는지 여부를 놓고는 보른과 아인슈타인의 견해가 갈라졌다.

3. 통계적 앙상블 해석

밸런타인(Leslie E. Ballentine)은 아인슈타인의 주장을 발전시켜 통계

적 앙상블 해석(SEI)을 정립했다. 이는 “임의의 순수 상태가 (따라서 임의

의 일반적인 상태가) 비슷하게 준비된 계의 앙상블의 어떤 통계적 속성을 

서술하며 개별 계의 완전한 서술일 필요는 없다”고 보는 입장이다.

SEI는 양자역학의 가설을 다음과 같이 제시한다.22) 

(SEI 1) 동역학적 변수(물리량)는 선형 연산자로 나타내며, 그 가능한 

값은 그 선형 연산자의 고유값이다.

(SEI 2) 각 상태에는 상태연산자(‘통계적 연산자’)가 일의적으로 대응

한다.

(SEI 3) 순수 상태와 비순수 상태(‘혼합 상태’)는 모두 근본적이며, 대

상의 앙상블에 대한 물리량의 확률분포를 나타낸다.

(SEI 4) 계의 변화는 상태의 변화 또는 물리량의 변화로 기술되며, 두 

변화 모두 유니터리 변환을 따른다. 

21) 아인슈타인의 확률 해석이 폰미제스의 빈도 해석에 기반을 두고 있음을 보

이는 것은 쉽지 않은 일이다. 폰미제스는 볼츠만의 방식을 따라 역학에 확

률이론을 적용하는 문제에 크게 관심을 가지고 있었고, 아인슈타인도 폰미

제스의 확률이론을 선호한 것으로 보인다. Mises (1912, 1920, 1921, 1922, 

1928/1936/1951/1972) 참조.
22) Ballentine (1998). 특히 chs. 2, 8, 9.
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SEI에서는 물리량이라는 개념이 중심적인 역할을 한다. 여기에서 물리

량은 동역학적 변수이며 꼭 관측가능해야 하는 것은 아니다. 선형 연산자

는 에르미트 연산자 또는 자기수반 연산자로 국한되기도 한다. SEI에서는 

단일한 측정과 통계적 실험을 구별한다. 가령 전자 이중프리즘을 이용하여 

전자회절 무늬를 얻은 히다치의 토노무라 등의 실험23)을 상세하게 살펴보

면, 하나의 전자가 일종의 파동처럼 행동한다거나 하는 일은 보이지 않는

다. 각 전자는 명실 공히 입자로 발사되어 입자처럼 운동한 뒤 사진건판에 

입자로서 흡수된다. 그 전자들이 회절무늬를 만드는 것은 수없이 많은 전

자들이 사진건판에 흔적을 만들어낸 뒤의 전체적인 결과일 뿐이다. 이는 

이 제안한 측정의 ‘개별적’ 사용과 ‘집단적’ 사용을 구별해야 한다는 이충형

의 제안과 직접 연관된다.24) 

SEI의 관점에서는 통계적 실험에 두 가지 국면이 있다. 하나는 ‘준비’이

고 다른 하나는 ‘측정’이다. 이를 이중틈새 실험에서 보면, 이중틈새에 도달

하기 전에 전자들이 단일틈새를 지나가게 함으로써 균일한 전자빔을 만들

어 내는 것이 ‘준비’에 해당한다. 만일 이중틈새 중 하나를 막아서 두 틈새 

중 어느 쪽을 지나가는지 알 수 있도록 한다면, 그것은 새로운 ‘준비’가 된

다. 이와 달리 그 전자빔이 사진건판에 흡수되어 자국을 남기는 것이 ‘측정’

이다. 

특정의 준비과정이 있고 난 뒤에는 이후의 ‘측정’에서 어떤 결과를 얻게 

될지 예상할 수 있는데, 고전역학과 달리 유일한 결과를 예상하는 것이 아

니라 결과들의 확률분포를 알 수 있을 뿐이다. 그런 점에서 준비과정은 측

정했을 때의 확률분포와 바로 연결된다.

SEI에서는 상태를 앙상블에 대한 확률분포의 집합으로 정의한다. 여기

에서 앙상블은 똑같이 준비된 대상계들의 가상적인 모음이란 의미이다. 밸

런타인은 가령 ‘상태’를 ‘상태 준비 절차’와 동일한 것으로 보는 견해25)는 

너무 조작주의적이라고 반대한다. 게다가 상이한 준비 절차가 같은 상태를 

23) Tonomura (1989).
24) Lee (2006), 이충형 (2012).
25) 대표적으로 Busch et al. (1995)나 Busch et al. (1996)는 상태를 ‘준비 절

차의 동치류’로 정의한다(p. 5) 이는 Ludwig (1954)에 기반을 둔 정의이다. 
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준비해 줄 수 있다. 대신 상태를 단순히 확률분포의 집합으로 정의하면 개

념적 난점들이 사라진다.26) 

마지노(Henry Margenau)도 이 점을 강조한다.27) 아인슈타인-포돌스키

-로젠의 사고실험에서 보이는 역설도 해결된다. 즉 단일한 측정 한번으로 

대상의 상태가 고유상태로 바뀐다고 가정하는 것은 과도하기 때문에, 이 

가정을 버리고, 새로운 상태의 규정도 앙상블의 확률분포로 보자는 것이다. 

그렇게 되면, 공간적 거리로 떨어져 있는 두 입자가 있을 때, 한 쪽의 측정

(이 경우는 준비의 역할도 함께 함)이 다른 쪽의 순간적인 측정으로 이어

진다고 말할 필요가 없다. 

벨 부등식과 관련된 실험들도 상세하게 살펴보면 단일한 빛알 쌍을 가지

고 실험을 하는 것이 아니라 많은 수의 빛알 쌍에 대한 통계적 상관성을 

확인하는 것임을 알 수 있다. 

SEI는 자주 숨은 변수 이론(이하 HVT)과 같은 것으로 여겨지곤 했다. 

그러나 밸런타인도 명시적으로 언급하듯이, SEI가 HVT와 자연스럽게 연

결되긴 하지만 반드시 HVT를 가정해야 하는 것은 아니다. 또한 벨 논변

을 비롯하여 글리슨 정리, 코흔-슈페커 정리, GHZ 논변 등 HVT에 대한 

여러 금지정리들이 있다고 해서, 곧 SEI가 폐기되는 것은 아니다. 벨의 논

변이 담긴 1964년의 논문에 못지않게 중요한 것이 바로 1962년의 “숨은 

변수 이론” 논문이다.28) 

통계역학의 성공을 모범으로 삼아 양자역학을 이해하고자 진행된 노력이 

바로 HVT에 대한 탐구이다. HVT를 논의한 이들의 관심은 “상태 벡터와 

함께 덧붙여지는 변수(숨은 변수)들의 값을 주면, 개개의 측정에 대해 (고

전역학에서처럼) 정확한 결과를 결정할 수 있게끔 하는 그런 변수들이 있어

서, 양자역학적 상태를 이 변수들로 규정되는 상태들의 통계적 앙상블로 간

주할 수 있는가 여부”(Bell 1966)였다. 그러나 1950~60년대에 글리슨, 야우

26) 더 상세한 것은 Ballentine (1998) pp. 43-8 참조.
27) Margenau (1936, 1937, 1958, 1963). ‘측정’의 의미에 관한 더 상세한 논의

로 Park (1968) 참조.
28) Bell (1964, 1966). 벨은 Bell (1966)을 1962년에 먼저 쓰고 투고했지만, 나

중에 쓴 Bell (1964)가 먼저 출판되었다.
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흐, 붑, 거더, 벨, 코첸-슈페커 등은 엄밀한 수학적 논의에 따른 일련의 금

지정리(no-go theorem)들을 통해 HVT가 양자역학과 양립하지 않음을 

논증하였다.

그러나 HVT의 금지정리가 바로 SEI의 금지정리를 의미하는 것은 아니

다. 대표적으로 글리슨의 정리를 살펴보자. SEI나 HVT가 양자역학의 해

석과 관련된 여러 문제를 잘 해결하기 위해서는 두 가지가 해결되어야 한

다. 첫째는 Pr  Tr  으로 주어지는 양자동역학의 확률

규칙, 즉 보른의 해석규칙이 얼마나 일반적인가를 분명하게 밝히는 것이고, 

둘째는 이렇게 주어진 사건의 확률분포가 전형적인 확률이론에 얼마나 잘 

부합하는가, 다시 말해서 콜모고로프 확률이론과 충돌하지 않는가를 밝히는 

것이다. 앞의 문제에 대한 대답이 글리슨의 정리이다. 이에 따르면 힐버트 

공간의 차원이 3보다 크거나 같으면, 모든 확률분포는 

Pr  Tr  가 되는 자국 1인 양의 자기수반 자국류 연산

자 로 나타낼 수 있다. 특히 순수상태의 경우에는   이고 

Pr 〈 〉이 된다.29) 글리슨의 정리가 말해 주는 것은 

양자동역학의 상태공간이 힐버트 공간으로 주어진다면, 허용되는 모든 상태

는 언제나 상태연산자로 나타낼 수 있다는 점이다. 따라서 상태공간의 구조

나 상태서술의 성격을 이해하기 위해서는 상태연산자의 집합만 정확히 이

해하면 된다고 말할 수 있다. 글리슨의 정리에 대한 따름정리 중 하나는 양

자역학에서는 서술대상이 어떤 물리량의 값을 소유하고 있다고 말하는 것

이 무의미하다는 것이다. 원론적으로 말하면, 임의의 사건   ′∊에 

대하여, 이 사건이 일어나는가라는 질문에는 참(T 또는 1) 또는 거짓(F 또

는 0)의 단 두 가지의 답만이 가능하다. 그러므로 ‘사건공간’은 일상적인 논

리와 같은 구조를 갖는다. 실험실 상황에서 어떤 물리량의 값이 어떤 범위 

안에 있는가, 아닌가에 대한 확률적 기술은 0 또는 1이라는 양자택일만이 

가능하다. 고전역학에서는 물리량의 값으로 상태를 기술하기 때문에, 상태

에 대한 명제도 사건에 대한 명제와 마찬가지로 0 또는 1이라는 양자택일

29) Gleason (1957). 글리슨의 정리의 상세한 내용과 단순화된 증명으로서 가령 

Cooke et al. (1985) 참조. 
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의 구조를 갖는다. 따라서 고전역학에서는 사건 ′  에 대하여 서술대

상이 라는 물리량의 값 를 ‘소유하고’ 있다고 말하는 데에 아무런 문제

가 생기지 않는다. 그러나 양자역학에서는 주어진 상태에 대한 사건의 확률

분포가 일반적으로 0과 1의 양자택일이 아니라 0과 1 사이의 연속적인 값

으로 주어진다. 글리슨의 정리가 아니라면, 이렇게 되는 까닭으로서, 더 하

위의 ‘근원사건’ 또는 ‘원자사건’을 찾지 못했기 때문일 가능성을 생각해 볼 

수 있다. 고전통계역학은 그러한 전략을 통해 양자택일이 아닌 확률적 서술

이 되는 이유를 성공적으로 밝힐 수 있었던 예이다. 그러나 글리슨의 정리

에 따르면 모든 가능한 상태는 반드시 상태연산자로 나타낼 수 있기 때문

에, 양자택일이 아닌 확률분포는 더 하위의 ‘근원사건’을 찾지 못했기 때문

이 아니라, 양자동역학에 고유한 성격이라는 것이 논리적인 귀결이다. 이런 

의미에서 글리슨의 정리는 HVT의 금지정리가 된다. 양자택일이 아닌 확률

분포의 결정이 양자동역학이 할 수 있는 최대한의 대상 서술이라면, 이는 

곧 대상이 어떤 물리량의 값을 ‘소유하고’ 있다고 말하는 것이 허용되지 않

음을 함축한다.

하지만 주어진 상태에 대한 사건의 확률분포가 개별적인 대상이 아니라 

앙상블에 대해서만 정의된다고 하면 글리슨 정리와 충돌하는 것은 없다. 

다른 HVT의 금지 정리들에 대해서도 꼼꼼하게 따져 보면 SEI와는 충돌

하지 않음을 확인할 수 있다.

4. 상태의 준비와 측정

SEI의 핵심 주장 중 하나는 (SEI 4)에서처럼 동역학적 변화(상태의 변화 

또는 물리량의 변화)를 유니터리한 것으로 본다는 것이다. 슈뢰딩거 방정식



〉  〉

의 형식적 풀이를 
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〉    〉 또는 간단히 〉  〉
와 같이 쓴다면, 시간전개의 생성원(낳음이) 역할을 하는 해밀터니안이 자

기수반( †  )이라는 조건은 곧 가 유니터리하다는 조건( † )
과 같다. 

그렇다면 SEI에서 측정 후의 상태는 어떻게 된다고 보아야 할까? 만일 

측정하는 물리량의 고유벡터가 〉이고, 그에 대응하는 고유값이   

(    ⋯ )라고 하면, (SEI 1)에 따라 어느 하나의 값을 측정 결과로 

얻었다면, 분명히 확률분포가 달라진다. 즉 측정 전에는 

측정값    …  …

확률 
 

 
 … 

 …

과 같이 여러 가능한 측정 결과의 예상되는 값들의 확률분포를 알 수 있지

만, 측정 후에는

측정값    …  …

확률 0 0 0 0 1 0

과 같이 분포가 바뀌게 된다. 

표준적인 논의에 따라 측정 후의 상태를 생각해 보자. 측정을 통해 가령 

  ′  의 결과를 얻고 난 뒤에 아무런 다른 작용을 가하지 않고 대상

과 측정 장치를 내버려 둔다면, 다시 물리량 A를 측정할 때 그 값은 확률 

1로 가 될 것이다. 따라서 중간에 어떤 일이 일어나는지 알 수 없지만, 

일단 측정을 통해   ′  라는 결과를 얻었다면, 대상계의 상태는 〉
가 되어야 할 것이다. 디랙은 이것에 대해 측정을 통해 대상계의 상태가 

새로운 고유상태로 도약한다고 표현했다.30) 

30) “When we measure a real dynamical variable , the disturbance 
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그러나 아인슈타인의 논의를 상기한다면, 이러한 도약이 납득하기 힘든 

것임에 틀림없다. 상태의 서술이 개별 계가 아니라 앙상블에 대한 것이며, 

상태가 유사하게 준비된 계들의 앙상블의 통계적 속성이라고 하면, 측정을 

한다고 해서 상태가 달라지는 것은 아니라고 하는 게 자연스럽다. 

폰노이만은 상태의 의미와 역할을 다음과 같이 말하고 있다. 

“상태(Zustand)는 이론적 구성물일 뿐이며 측정결과만이 실제로 이용

할 수 있다. 물리학의 문제는 과거의 측정결과와 미래의 측정결과 사

이의 관계를 마련하는 것이다. 이는 언제나 ‘상태’라는 보조 개념을 도

입함으로써 이루어지는데, 물리이론은 한편으로 과거의 측정들로부터 

현재의 상태를 어떻게 추론할 것인지 말해 주어야 하고, 다른 한편으

로 현재의 상태로부터 미래의 측정들을 어떻게 추론할 것인지 말해 주

어야 한다.”(강조는 인용자)31) 

 

그러나 표준적인 논의에서처럼 단 한 번의 측정을 통해 그 직후의 상태

를 추론하는 것은 가능하지 않다.32) 반대 방향의 추론은 언제나 가능하다. 

involved in the act of measurement causes a jump in the state of the 

dynamical system. From physical continuity, if we make a second 

measurement of the same dynamical variable   immediately after the 

first, the result of the second measurement must be the same as that 

of the first. Thus after the first measurement has been made, there 

is no indeterminacy in the result of the second, Hence, after the first 

measurement has been made, the system is in an eigenstate of the 

dynamical variable , the eigenvalue it belongs to being equal to the 

result of the first measurement. This conclusion must still hold if the 

second measurement is not actually made. In this way we see that a 

measurement always causes the system to jump into an eigenstate of 

the dynamical variable that is being measured, the eigenvalue this 

eigenstate belongs to being equal to the result of the measurement.” 

Dirac (1958), p. 36. (이탤릭체 강조는 인용자) 
31) von Neumann (1932), p. 178, von Neumann (1955), p. 337. 마지노도 측

정의 이중적 측면, 즉 상태 준비의 측면과 상태 기록(확인)의 측면을 구별

해야 함을 역설했다(Margenau 1937).
32) 폰노이만 자신은 물리량을 연속을 측정하면 같은 값을 얻게 된다는 것을 

컴프턴과 시몬스의 실험을 인용하여 논변 중의 일부로 채택하고 있다. von 
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상태가 라면 확률 1로  ′  를 얻을 것이다. 상태가  




이라면 ′  를 얻을 확률은   
이다. 그러나 측정 결과만으로 

원래 어떤 상태에 있었는지를 알아낼 수는 없다. 그러나 “(과거의) 사전적 

측정들(vergangenen Messungen)이 현재의 상태를 일의적으로 결정하는 

데 충분하지 않은 경우라도, 특정의 상태가 어떤 확률로 있는지 그 측정들

로부터 추론할 수 있을 것”이기 때문에, 올바른 과제는 “어떤 측정 결과들

이 주어져 있을 때, 만일 측정을 수행한다면 같은 결과를 얻어내게 될 혼

합상태(Gemisch)를 찾아내는 것”이다. 바로 이 대목에서 폰노이만은 앙상

블의 개념을 도입한다. 단일한 계가 아니라 앙상블이라면 상태연산자를 찾

아낼 수 있다는 것이다. 

“많은 계 ′ ⋯ ′ (계 의 복제)에 대하여, … 이 앙상블 

′ ⋯ ′  은 측정 결과들에 대응하는 혼합상태와 모든 통계적 

속성에서 일치한다.”33) 

그 뒤에 폰노이만은 상세한 논의를 거쳐 다음과 같은 통계적 연산자를 

제안했다.34) 

 ′ 


  

여기에서 은 측정결과가 ′  이 될 확률이다. 측정 이전의 상태가 

 


라면

Neumann (1932), p. 177, von Neumann (1955), p. 335. 
33) von Neumann (1932), pp. 179-80, von Neumann (1955), pp. 337-8.
34) 폰노이만의 논의에서 이 식은 유도되는 것이 아니라 일단 그렇게 제안한 

뒤에 그 의미를 정당화한 것이다. 폰노이만의 논의를 확장한 뤼더스는 명시

적으로 ‘제안’(Ansatz)이란 표현을 쓰고 있다. 이 식을 흔히 ‘투사 가설’이라

고 하는 것은 이 때문이다.
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 ′ 


  

이 되며, 일반적으로 측정 이전의 상태가 벡터 〉 또는 통계적 연산자 

로 주어진다면,

 ′ 

〈〉   또는  ′ 



Tr    

이 된다. 1951년 게르하르트 뤼더스는 접힘이 있는 경우까지를 고려하여 

더 일반적으로

 ′ 


   

이 됨을 제안하고 이를 정당화했다.35) 이것이 뤼더스 규칙(Lüders rule)이

며 보른 규칙과 폰노이만 투사의 종합이라 할 수 있다. 

밸런타인도 폰노이만-뤼더스의 규칙을 측정과 관련하여 논의하고 있

다.36) 

(SEI 5) 측정은 측정값(고유값)에 대응하는 고유상태로의 상태 준비이

며, 여과형 측정 후의 새로운 상태는 다음과 같이 준비된다.

 ′ Tr


     (단   〉〈  )
  만일 측정 전의 상태가 순수상태   〉〈이면,  ′  이
므로, 측정 후의 상태는 측정값에 대응하는 고유상태 〉가 된다.

그러나 밸런타인은 측정 후의 상태 변화를 양자역학의 가설 속에 포함시

키지 않는다. 양자역학이라는 통계적 서술에서 (SEI 5)는 출발점으로 선택

하는 가설이 아니라 실제의 측정 상황을 설명하기 위해 도입하는 것이며 

35) Lüders (1951), Kirkpatrick (2006). 
36) Ballentine (1998), p. 247.
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다른 가설들로부터 정당화할 수 있는 사후적 결과이다. 

여기에서 주목할 점은 폰노이만이 측정 후의 상태를 규정하기 위한 논변

에서 명시적으로 앙상블 개념에 의존하고 있다는 점이다. 가장 자주 인용

되는 부분인 상태의 시간 전개에서도 이 점을 분명히 하고 있다.37)

그러므로 우리는 계 S 또는 앙상블 [S1,  …, SN]의 시간적 변화에 

근본적으로 다른 두 가지 방식을 갖는다. 첫째, 측정을 통한 임의적인

(willkürlich) 변화로서, 다음 공식으로 주어진다.

(1.)  →  ′ 


〈 〉  
둘째, 시간의 흐름(Zeitablauf)에 따라 자동으로 일어나는 변화로서, 다

음 공식으로 주어진다.

(2.)  →  ′     
(강조는 인용자)

그런데 폰노이만의 논리에서는 유니터리하지 않은 변화 (1.)이 모두 앙

상블에 대한 고찰에서 비롯되었는데, 실상 단일한 계에도 이를 적용할 수 

있다는 정당화나 적용가능성 여부에 대한 논의가 없다. 

논의를 더 명확하게 하기 위해 측정 장치를 대상에 덧붙인 상태를 생각

하자. 대상계 S와 측정 장치 M이 측정의 상호작용을 하면, 중립 상태 〉
에 있던 측정 장치는 대상계의 중첩 상태와 얽히게(entangled)된다. 즉

〉⊗〉  〉⊗〉    (    ⋯ )

과 같다. 힐버트 공간의 벡터는 선형이므로,

〉⊗〉 


〉⊗〉

이 된다. SEI가 아닌 다른 해석에서는 이렇게 얽힌 상태로 있는 대상-측정 

장치 복합계에서 어떻게 측정 장치의 눈금이 겹침(중첩)이 없는 방식으로 

37) von Neumann (1932), p. 186, von Neumann (1955), p. 351.
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나올 수 있는가 해명해야 한다. 그러나 SEI에서는 측정이 상태의 기록(확

률분포의 확인)인 동시에 새로운 상태의 준비이며, 이 때의 상태 개념은 철

저하게 앙상블에 대한 것이므로 그러한 해명의 의무는 사라진다. SEI를 받

아들인다면, 상태벡터는 한 번의 실험을 통해 정해지는 것이 아니라, 똑같

이 준비된 수없이 많은 앙상블에 대한 확률분포로 정해진다. 따라서 대상

이 개별적인 계로서는 온전히 입자이지만, 앙상블로서는 확률분포를 보이

다고 해석하는 것이 옳다. 다시 말해 측정을 개별적으로 사용하는 것과 집

단적으로 사용하는 것을 구분해야 한다.38) 

최근에 알라페르디안 등(Allahverdyan-Balian-Nieuwenhuizen)은 통

계역학의 동역학적 모형을 이용하여 측정의 문제를 해결했다고 발표했

다.39) 이들은 자기마당의 퀴리-바이스 모형(Curie-Weiss model)을 이용

하여 스핀의 측정을 명확하게 해명하는 데 성공했다. 흥미로운 점은 이들

이 옹호하는 양자역학의 해석이 바로 SEI라는 점이다. 

5. ‘서울 해석’에 대한 함의

1986년부터 장회익은 물리이론 특히 동역학이론의 구조에 주목하면서 

메타이론적 고찰을 토대로 양자역학에 대한 대안적 해석을 제시했다.40) 이 

새로운 해석에서는 양자역학이 형식이론의 관점에서 볼 때, ‘동역학적 특

성’으로 정의된 대상을 인식주체의 영역과 무관하게 서술하는 이론이며, 메

타이론적으로 대상에 대한 ‘상태’의 서술과 그로부터 관측자가 얻을 수 있

는 ‘사건’의 서술 사이에 명확한 규칙을 제시하는 동역학 체계라는 점을 강

조한다. 이를 ‘서울 해석’(이하 SI)이라 한다.

이 해석은 동역학에 내재해 있는 상태서술과 이를 사용하여 대상으로부

터 정보를 얻는 사건서술을 명시적으로 구별함으로써, 양자역학의 해석과 

38) Lee (2006), 이충형 (2012).
39) Allahverdyan et al. (2013), Allahverdyan et al. (2003).
40) 장회익 (1986, 1989, 1990, 1994, 2012), 이중원 (1995), 김재영 (2000), 

(2001).
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관련된 문제들을 해결할 수 있다고 주장한다. 여기에서 핵심적인 역할을 

하는 것이 바로 측정과정에 대한 개념적 분석이다. 측정은 대상과 측정 장

치 사이의 물리적 상호작용이라기보다는 서술자가 서술대상에 대해 이러저

러한 정보를 얻는 인식적 과정이다. 그러나 서울 해석이 명실 공히 양자역

학에 대한 대안적 해석으로 자리를 잡기 위해서는 측정 과정의 핵심에 대

한 구체적인 분석이 보충되어야 한다. 또한 측정 과정에서 어떤 의미로 ‘통

계적 해석’이 중요한 역할을 하는지 명료하게 밝혀야 한다. 

최근 장회익은 측정과정에 대한 구체적인 논의를 전개했다(장회익 

2013a, 2013b). [부록 참조] 여기에서는 그 내용을 중심으로 측정과정을 

더 상세하게 해명하고자 한다. 먼저 특기할 점은 대상의 상태를 나타내는 

힐버트 공간의 벡터의 기저(基底, basis)를 주체의 표상 영역에 속한 관측

(조작)가능치 공간과의 관계로 규정한다는 점이다. 수학적으로 힐버트 공간

의 기저는 일반적인 선형벡터공간에서와 마찬가지로 단지 단위벡터일 뿐이

며, 그 선택은 자유롭다. 그러나 양자역학을 사용하는 입장에서는 기저의 

선택이 곧 물리량의 선택이기도 하다. 힐버트 공간에 대한 빛띠분해정리

(spectral decomposition theorem)에 따르면, 자기수반 연산자는 항상 일

의적으로 

 


  


〉〈

과 같이 쓸 수 있다. 따라서 물리량을 자기수반 연산자로 나타낸다는 양자

역학의 가설은 곧 그 물리량의 가능한 측정값으로서 고유값 을 규정하

는 동시에 그에 대응하는 고유벡터를 기저로 선택할 수 있음을 의미한다. 

가령 다른 물리량  


  을 측정하는 경우라면, 기저도 함께 달

라진다. 

앞에서 다룬 폰노이만의 논의에서 측정 후의 상태를 규정할 때 근본적인 

역할을 하는 는 다름 아니라 측정하는 물리량의 고유값 에 대응되는 

고유벡터이다. 폰노이만은 과거의 측정으로부터 현재의 상태를 어떻게 추

론할 수 있는지에 대한 논의에서 다음과 같이 지적한다.
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“따라서 계 S에 관한 정보는 언제나 어떤 속성(물리량) 를 측정하는

가에 따라 달라진다.”41)

이제 스크린에 구멍을 뚫어 구멍을 통과하면 나머지 기저에 대한 계수를 

0이라고 봄으로써 상태를 준비하는 과정을 살펴보자. 이는 앞의 (SEI 5)의 

여과형 측정의 상황에 연결될 수 있으며, 보어가 제안했던 단순한 이중틈

새 사고실험을 확장하여 상태의 준비를 고찰하는 논의이다. 구체적으로 여

러 가능성들 중에서 원하지 않는 것을 차단하는 방식을 생각할 수 있다. 

이를 표준적인 논의와 비교하자. 디랙의 논의는 다음과 같다. 어떤 물리량

을 측정하여 특정의 값을 얻었다고 하고, 거기에 뒤이어 곧바로 다시 그 

물리량을 측정하면, 같은 값을 얻을 것이다. 이는 “물리적 연속성” 때문이

다. 만일 계가 고유상태에 있다면, 그 물리량의 측정값은 항상 그 고유상태

에 대응하는 고유값이 될 것이다. 따라서 “측정은 계가 그 동역학적 변수

의 고유상태로 도약하게 만든다.”라는 것이 디랙의 결론이다(각주 31). 이 

논변의 가장 큰 맹점은 대부분의 측정이 대상을 파괴한다는 것이다. 측정

은 대개 사진건판에 흔적을 남기거나 붕괴율을 재거나 검출장치에 도달하

는 입자의 수를 세서 산란단면적을 잰다. 어느 경우든 대상은 사라진다. 따

라서 연달아 두 번째 측정을 한다는 것이 비현실적이다. 

이 논의는 이중틈새 실험에 대한 오해를 불식시키는 데 매우 유용하다. 

이중틈새 실험에서 한 틈새를 막으면 간섭무늬가 사라진다. 그런데 이를 

두 틈새 중 어느 쪽을 지나간 것인지 정보를 주는 것으로 해석하고, 그렇

게 관측하는 행위가 파동을 입자로 바꾸게 된다는 담론이 널리 퍼져 있

다.42) 가령 윌러의 ‘뒤늦은 선택 실험’은 두 틈새 중 어느 곳을 통해 전자

가 움직였는지 WP(which-path)의 정보를 얻게 되면 파동이 아니라 입자

의 속성을 보인다고 설명한다.43) 

만일 SEI를 받아들인다면, 이 상태벡터는 한 번의 실험을 통해 정해지

는 것이 아니라, 똑같이 준비된 수없이 많은 앙상블에 대한 확률분포를 의

41) von Neumann (1932), pp. 179-80, von Neumann (1955), pp. 337-8.
42) 가령 Kaiser (2011), pp. 3-13. 
43) Wheeler (1978, 1983), 김재영 (2007).



김 재 영100

미한다. 따라서 대상이 개별적인 계로서는 온전히 입자이지만, 앙상블로서

는 확률분포를 보이다고 해석하는 것이 옳다. 다시 말해 측정을 개별적으

로 사용하는 것과 집단적으로 사용하는 것을 구분해야 한다.44) 이 때 아직 

정해지지 않은 계수    등은 통과한 구멍의 상대적 크기에 따라 정해진

다기보다는 똑같은 실험을 반복해서 그 빈도로부터 얻어낼 수 있다. 이 점

은 (장회익 2013b)에서도 명시적으로 언급되었다. “실제 측정을 통해 하나

의 관측치가 얻어지고 새로운 상태로 전이되기 위해서는 단일 측정으로는 

불가능”하며 “여러 번의 시도 끝에 오직 
의 확률만으로 성공할 수 있

다.” 여기에 SI와 SEI의 접점이 있다. SI는 여러 면에서 SEI와 잘 맞물릴 

수 있을 것으로 보인다. 특히 측정이 구체적 과정에 대한 상세한 논의를 

위해서 SEI의 성과를 원용하는 것이 중요하다.

아인슈타인은 “신은 주사위를 던지지 않는다.”라고 적으면서 마음속에 

양자역학이 최종이론이 아니라는 생각을 했을 것이다. 그 자신이 통계역학

의 기초를 상세하게 탐구했고, 다양한 방식으로 확률이론이 물리학에서 중

요한 역할을 함을 보여주었으면서도, 상대성이론과 같은 명료하고도 결정

론적인 탁월한 이론을 늘 염두에 두고 있었던 까닭은 구성적 이론

(constructive theory)이 아닌 원리-이론(principle-theory)을 지향하고 

있었기 때문일 것이다.45) 구성적 이론은 기체분자운동론처럼 더 단순한 형

식적 틀로부터 더 복잡한 현상에 대한 그림을 세우려고 하는 반면, 원리-

이론의 토대를 이루는 요소들은 가설적으로 구성된 것이 아니라 경험적으

로 발견된 것이며, 자연과정의 일반적인 특성들이며, 여러 과정들이나 그에 

대한 이론적 표상들이 충족시켜야 할 표준들의 수학적으로 정식화에서 나

오는 원리들이다. 

만일 확률이론을 단순히 구성적 이론을 위한 임시방편으로 여기지 않는

다면, 양자역학은 지금 명실 공히 원리-이론으로서 자리를 잡았다고 해야 

할 것이다. 그리고 그 핵심에 바로 ‘통계적 해석’이 놓여 있다. 양자역학의 

확률적 서술이 개별적인 대상에도 적용될 수 있어야 한다고 요구하려면, 

44) Lee (2006), 이충형 (2012).
45) Einstein (1919). Reprinted as “What is the Theory of Relativity?” In 

Einstein (1954) Ideas and Opinions. Bonanza Books, pp. 227–32.



통계적 앙상블 해석과 측정의 문제 101

그만큼 더 깊이 있는 통찰이 필요하다. 

이후의 연구에서는 ‘통계적 해석’에서 상태에 대한 규정, 즉 소위 파동함

수의 개념적 지위를 실재론적 해석들 및 ‘서울 해석’과의 연관 속에서 더 

상세하게 해명할 것이다. 또한 여기에서 제안한 SI와 SEI의 접점의 가능성

을 더 면밀하게 살필 것이다. 특히 숨은변수이론의 금지정리들이 SEI와 충

돌을 일으키지 않음을 명시적으로 자세하게 밝힐 것이다.46)

46) 감사의 글. 이 논문은 템플턴 재단의 재정지원을 받은 “양자역학의 기초에 

관한 철학적 성찰” 연구모임에서 2013년 7월에 발표된 초고에 바탕을 두고 

있다. 그 연구모임에서 함께 토론하고 초고에 예리한 비판을 해 주신 장회

익 교수님을 비롯한 구성원들께 깊이 감사드린다. 또한 미출판된 연구노트

를 직접 인용할 수 있게 허락해 주신 장회익 교수님께 감사드린다. 이 논문

의 초고에 대한 익명의 심사자들께 감사드린다. 



김 재 영102

부록 A: 측정에 대한 새로운 정리 (장회익 2013a)

대상의 상태는 힐버트 공간의 벡터로 표시되나 이것의 표현 바탕(basis)

은 주체의 표상 영역에 속한 관측(조작)가능치 공간과의 관계에 의해 설정

된다. 이것은 대상계가 놓여 있는 공간의 둘레공간을 형성하며 대상계 상

태설정의 경계조건을 형성한다.

대상의 임의의 상태 〉는 관측(조작)가능치 공간   를 바탕으로

〉 〉 〉 〉⋯
으로 표현된다. 처음 임의의 경계조건 아래 마련된 경우에는 아직 계수 세

트    의 값들이 정해지지 않았으므로 이는 ‘모르는 상태’이다.

지금 대상 입자를 관측 스크린 

  ⋯에 통과시켜 관측(조작)

가능치   에 해당하는 측정을 수행하자. 여기서 

는 자리가 빈 구멍으

로 이루어져 있어서 대상이 이를 통과했음을 말하고 그렇지 못한 대상은 

다른 관측치  ⋯에 맞부딪쳐 파괴(흡수)되었음을 말한다. (여기서 위

치 관측을 염두에 둔다.)

이렇게 하면 
의 확률로(이 값을 미리 알지는 못함) 대상의 상태는

〉 〉
로 전이된다. 즉 초기 상태가 이렇게 설정된 것이다. 

한편 관측 스크린 



 ⋯에 통과시키면

〉 〉 〉
를 얻고, 관측 스크린 






⋯에 통과시키면

〉 〉 〉 〉
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를 얻는다. 여기서 계수      등은 통과한 구멍의 상대적 크기

에 따라 정할 수 있다.

대상에 초기상태 〉에 있는 탐지입자를 쪼여 초기 복합상태

〉 〉 〉 〉⋯⊗〉
를 만든다. 만일 탐지입자와 대상 사이의 상호작용으로 인해 복합계의 말

기 상태가 얽힘상태

〉 〉⊗〉 〉⊗〉 〉⊗〉⋯
의 형태로 된다면, 탐지입자를 스크린 


  ⋯에 통과시켜 

〉 〉⊗〉
를 얻거나, 혹은   ⋯  형태의 스크린에 탐지입자를 흡수시켜 고

유치 하나 를 확인함으로써

〉 〉⊗〉
형태로 대상의 상태를 얻어낼 수 있다. 이것이 바로 상태 환원 혹은 상태 

붕괴라 부르는 것이다. 
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부록 B: 측정에 대한 새로운 고찰 (장회익 2013b) 

실제 측정을 통해 하나의 관측치가 얻어지고 새로운 상태로 전이되기 위

해서는 단일 측정으로는 불가능하다. (이미 고유상태에 있어서 같은 측정

치가 반복되는 경우 이외에는) 상태 상황 

〉 〉⊗〉 〉⊗〉
에서 예컨대 〉이 확인되기 위해서는 〉이 〉과 충돌하여 파괴되거

나 〉가 〉와 충돌해 파괴됨을 확인해야 한다. 즉 어느 한 측정치가 

확인되기 위해서는 그 값의 눈금에서 대상이 파괴되거나 그 값의 눈금을 

제외한 나머지 눈금에서 대상이 파괴되어야 한다. 전자의 경우에는 상태전

환 형태의 측정에 활용할 수 없으며, 후자의 경우를 위해서는 여러 번의 

시도 끝에 오직 
의 확률만으로 성공할 수 있다. 따라서 확률 1로의 전

환은 실제로 이러한 과정을 거쳐 얻어진 결과임을 말해주는 것이기도 하다.

오직 다음과 같은 예외는 생각할 수 있다. 상태 

〉 〉 〉
로 주어진 대상에 대해 상태 〉의 탐지입자를 발사하여 이들 사이의 상

호작용을 시간의존적 섭동으로 취급해 그 복합계의 양자역학적 해를 구하

고 그 해가 바로 

〉⊗〉   ⇒     〉⊗〉 〉⊗〉
형태의 복합(얽힘) 상태, 또는

〉⊗〉   ⇒     〉⊗〉  또는 〉⊗〉
형태의 혼합상태가 된다고 하면, 파괴의 방식으로 〉 혹은 〉를 확인



통계적 앙상블 해석과 측정의 문제 105

함으로써 단일 측정에 의해 〉을 확인하는 것이 가능하나, 이때는 슈뢰

딩거 방정식의 해로서 탐지입자와 대상 사이의 상호작용으로 인해 이런 형

태의 상태에 놓이게 됨을 별도로 보여주어야 한다. 그런데 탐지입자가 외

부에서 입사할 경우 이들 간의 상호작용에 의해 이러한 선택적 얽힘이 된

다거나 또는 이런 혼합상태로 전환됨을 동역학적으로 보이기는 매우 어려

울 듯하다. 
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Measurement in the Statistical Ensemble 
Interpretation (SEI)

Zae-young Ghim

I examined the Statistical Ensemble Interpretation (SEI) of 

quantum mechanics. Historical reappraisal of Max Born’s statistical 

interpretation shows precisely how Born used the concept of the 

probability. After investigating the so-called Ensemble 

Interpretation proposed by Albert Einstein based on Born’s 

discussion, I discussed the details of SEI with the emphasis on the 

preparation of the state and measurement. Moreover, I contrasted 

this with recent discussion of the ‘Seoul Interpretation’ (SI). One 

can see the close affinity between SEI and SI. This gives the basis 

of the research on the future alternative interpretation of quantum 

mechanics. 

Key Words: Quantum Mechanics, Statistical Ensemble 

Interpretation (SEI), Born’s statistical 

interpretation, Preparation of the state, 

Measurement, Seoul Interpretation (SI).




