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복잡성 과학의 새로운 패러다임과

전일론적 존재론*

1)

2)나 정 민‡

경험적 세계를 탐구하는 학문인 과학이 사용하는 방법론은 그 대상에 접근

하기 위한 수단 이면서 동시에 인식주관이 갖는 인식론적 틀 이다 이‘ ’ ‘ ’ .

렇게 개별 과학이론의 대상들은 그 과학이론들이 사용하는 방법론에 의해서

만 접근될 수밖에 없다는 의미에서 개별 과학이론의 대상들에 대한 존재론적

규명의 작업은 해당 과학이론이 사용하는 방법론을 통해서만 가능하다 이렇.

게 과학이론의 대상들에 대한 존재론적 규명은 방법론이라는 인식론을 출발

점으로 할 수밖에 없다 이러한 구도 하에서 본 논문은 과학이론들이 사용. ,

하는 방법론의 상이성에 따른 존재론적 차이점을 살펴보고자 한다 더 나아.

가 해당 방법론에 대응되는 존재론적 특성이 경험적 세계에 대한 우리의‘( )

이해 라는 과학이 갖는 역할의 측면에서 어떤 의미를 함의하고 있는가도 함’

께 살펴보고자 한다.

주요어 과학이론 고전역학 복잡계 방법론 존재론적 규명 선형성, , , , , ,【 】

비선형성 관계성,

앞으로의 논의를 위한 전제1.
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론적 방법론에 의해서 그 토대가 완성되었으며 뉴턴에 의해서 하나의 종,

합적 체계를 갖추게 되었다 이 뉴턴역학은 근대과학의 눈부신 성공과 근.

대과학혁명의 발판이 되었으며 더 나아가 년간 유지되어왔던 목적, 2000 ‘

론적이고 유기체적인 자연관 을 기계론적 자연관 으로 바꾸어 놓는데 결’ ‘ ’

정적인 역할을 하였다 주지하다시피 기계론적 자연관 이란 자연현상을. , ‘ ’ ,

기계적 움직임으로 해석하는 철학적 관점이다 이 관점에 따라면 전체는. ,

부분들로 쪼개지며 이 부분들은 결정론적인 원인 결과의 연과성에 의해, -

움직이며 다시 이러한 운동을 하는 부분들의 집합이 모여 전체를 이루는,

존재를 의미한다.1) 이러한 의미에서 기계론적 존재론은 전체가 부분으로,

쪼개질 수 있다는 의미에서 분석적 이며 전체가 부분들로 이루어졌다는‘ ’ ,

의미에서의 개체중심의 환원론 그리고 그 움직임이 엄격한 인과성의 원‘ ’,

리를 따르기 때문에 우연성이 개입될 여지가 없다는 필연성 이라는 성질‘ ’

을 가지게 된다 따라서 우리는 기계론적 세계상에 대한 비유로 전체는. ‘

부분의 합 이라는 말을 사용한다 그리고 이 말은 전체는 부분의 합 이’ . , ‘

상 이라는 유비를 갖는 전일론과 일반적으로 대조된다’ .2)

이러한 의미에서 뉴턴역학이 기계론적 세계상을 보여준다는 말은 뉴턴,

역학은방금말한 분석적 개체중심적환원론 그리고 필연성 의성질. ‘ ’, ‘ ’, ‘ ’

을 충족하여야 한다는 뜻이다 그런데 뉴턴역학의 근간을 이루는 만유인.

력의 법칙과 뉴턴의 세 가지 법칙은 기술된 내용만을 봐서는 기계론적

세계상과 별다른 연관성이 없어 보인다 심지어 상호작용을 기술하는 만.

유인력의 법칙은 개체 중심적 환원론과는 거리가 멀어 보이며 나머지 세,

가지 법칙도 사정은 비슷하다 그럼 뉴턴역학이 기계론적 세계상을 대변. ‘

한다 는 과학철학의 해석은 잘못된 것인가 당연히 그렇지 않다 뉴턴역’ ? . ‘

학이 기계론적 세계상을 대변한다 는 말은 뉴턴역학에 대한 존재론적’ ‘ 3)

1) Peter Janich, Art. "Mechanismus", in Enzyklopèdie Philosophie Und

Wissenschaftlstjeorie, Band 2. Hrsg. von Jèrgen Mittelstraß,

Stuttgart, Weimar, 1995. pp. 826-827.

2) Martin Carrier, Art. "Reduktion", in Enzyklopèdie Philosophie Und

Wissenschaftlstjeorie, Band 3. Hrsg. von Jèrgen Mittelstraß,

Stuttgart, Weimar, 1995, pp. 516-517.

3) 존재론이란 세계 의 성질에 대해 해명하는 학문으로 일반적으로 존재하는‘ ’ ‘
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해석 이다 여기서 우리는 어떤 과학이론에 대해서 존재론적 규정을 한다’ .

는 말의 의미를 깊이 생각해 보아야 한다 어떤 과학이론에 대한 존재론.

적 해석하기 위해서는 우선 존재론적 규정이 행해지는 대상이 정해져야

한다 이는 당연한 말인지도 모르겠지만 우리는 종종 중요한 점을 간과. ,

하는 경향이 있다 과학이론에 대한 존재론적 해석이라는 말을 있는 그대.

로 받아들이게 되면 그 과학이론 에 대한 존재론적 규정이라고 생각하기, ‘ ’

쉽다 그러나 존재론이란 정의 상 존재하는 것들의 존재방식 에 대한 철. ‘ ’

학적 작업이다 그리고 과학이론에서 존재하는 대상은 이론이 아니라 그. ,

이론이 적용되는 대상이다 따라서 과학이론에 대한 존재론적 규정 이하. ‘ (

라 하겠음 이라는 작업이란 과학이론에 존재하는 것들의 존재방식 을OD )’ , ‘ ’

탐구하는 작업이다 이렇게 의 대상은 이론 이 아니라 그 과학이론이. OD ‘ ’ ‘

기술하고 있는 물리적 대상의 존재방식 이다( ) ’ .

그러면 그 대상의 존재방식을 우리는 어떻게 알 수 있을까 일반적으?

로 존재하는 물리적 대상은 많은 정확히는 무수한 성질을 가지고 있다( ) .

이 무수한 성질들 중에서 과학이론은 특정의 성질에 관심을 가지며 이, ,

를 본질이라고 전제하고 이러한 성질의 법칙성을 기술한다 따라서 의. OD

작업은 그 과학이론이 기술하고 있는 성질을 중심으로 대상의 존재방식

을 살펴보아야만 한다 뉴턴역학에서는 대상의 본질적 성질을 그 대상의.

움직임 이라 규정한다 따라서 뉴턴역학에 대한 존재론적 규정이란 그‘ ’ . ,

역학의 법칙이 기술하고 있는 물리적 대상이 어떻게 움직이고 있는가를

살펴보는 작업이다 이렇게 어떻게 움직이는가 에 대한 정보가 있어야만. ‘ ’

해당 과학이론에 대한 존재론적 규정을 할 수 있다 그런데 움직임 이란. ‘ ’

본질적으로 시간의 지평 을 포함한다 변화가 없는 움직임이란 없으며 변‘ ’ .

화란 시간의 지평 속에서 나타나는 물리적 현상이다 이러한 논거에 입각.

해서 란 시간의 지평 속에서 그 과학이론이 기술하고 있는 대상의, ‘OD' ’

것 들에 대한 학문으로 받아들여진다 즉 에 대한 것이다 인식론’ . ‘Waht is' .

이란 존재하는 세계에 대한 인간 인식과 그 경계 그리고 타당성에 관한 학

문으로 에 해당된다 이러한 정의에 따를 때 존재하는’How can know' . ,

세계에 대한 인간의 탐구활동인 과학이론 안에서 존재론과 인식론은 분리

될 수 없는 관계에 놓여있다.
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움직이는 방식에 대한 존재론적 해석 이 되는 것이다’ .

이런 측면에서 본다면 뉴턴역학의 법칙들 그 자체는 존재론적 규정의,

대상이 될 수 없다 그 이유는 의 작업을 위해서는 대상이 시간 속에. , OD

서 어떻게 움직이고 있는가에 대한 정보가 있어야만 하는데 법칙들은 단,

지 그 물리적 대상들이 움직이는 원인인 힘 또는 에너지에 대한 기술이

기 때문이다 이 움직임에 대한 정보를 얻기 위해서는 그 법칙들 자체만.

으로는 부족하고 그 법칙을 실제적으로 풀이 하는 과정이 이루어져야 한, ‘ ’

다 그리고 개개의 법칙에 대한 실제적인 풀이과정에는 개개의 방법론들.

이 있다 이러한 실제적 풀이과정을 거치고 나면 우리는 법칙이 기술하고.

있는 물리적 대상의 시간에 따른 변화의 양상에 대한 정보를 얻을 수 있

게 된다 이렇게 란 그 과학이론이 기술하고 있는 법칙의 수준에서. ‘OD'

행해지는 철학적 작업이 아니라 방법론을 사용하여 그 법칙이 실제적으,

로 풀이되고 난 이 후에 그 물리적 대상이 움직이는 양상에 대한 탐구이

다 이렇게 과학이론에서는 그 움직이는 양상이 그 대상이 존재하는 방식.

이며 따라서 그 움직임이 어떠한가에 따라 그 대상의 존재론적 규정도,

달라진다.

이러한 모든 단계를 고려하여 나온 철학적 해석이 바로 뉴턴역학은 기‘

계론적 세계상을 보여준다 라는 존재론적 규정이다 따라서 여기서 말하는’ .

세계상의 의미는 법칙들의 지배를 받는 대상의 움직이는 존재방식 이 기, ‘ ’

계론적이라는 것이지 그 움직임의 원인으로 작용하는 힘이 기계론적이라,

는 말이 아니다 다시 말하면 뉴턴역학이 기계론적이다 라는 말은 우주. ‘ ’ ,

의 모든 존재들은 뉴턴역학의 법칙들이 기술하는 힘이 원인이 되어 움직

이지만 그 움직임이 어떠한가를 얻기 위해서는 방법론을 적용하여 그 법,

칙을 실제적으로 풀어야만 한다 그리고 이 풀이과정을 거쳐 얻어진 뉴턴.

역학의 대상들의 움직임의 양상은 매시간 하나의 점으로 환원되며 결정,

론적 인과성의 연관관계를 보인다는 의미에서 기계적 이라고 하는 것이‘ ’

다 이렇게 뉴턴역학이 기계론적 세계상을 보여준다는 철학적인 해석은. ,

뉴턴법칙 자체에 대한 해석이 아니라 그 법칙의 지배를 받는 대상들의,

움직임이 어떠한가에 대한 해석이다 이러한 과정을 거치게 되기 때문에. ,

뉴턴역학에서 말하는 만유인력의 법칙도 나머지 뉴턴의 가지 법칙들의3
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존재론적 규정이 기계론적 세계상이 되는 것이다 이렇게 어떤 과학이론.

에 대한 존재론적 규명의 작업은 이 이론이 기술하는 법칙의 차원에서,

기술되고 있는 물리적 대상이 아니라 그 법칙의 영향아래 있는 물리( ) , (

적 대상이 시간적으로 어떤 움직임을 보이고 있으며 이 움직임은 어떠) ,

한 방식으로 규정될 수 있는가를 그 대상으로 한다 이러한 의미에서 힘.

에 대한 기술인 뉴턴역학의 법칙 그 자체는 기계론적 특성을 띌 필요도

없으며 더 나아가 뉴턴역학의 법칙과 기계론을 연관시키는 것은 범주 적,

용의 오류이다.

지금까지의 논의를 정리 하자면 해당 과학이론에 대한 존재론적 규정,

이라는 작업은 우선은 당연히 과학이론이라는 법칙이 있어야 하겠고 그, ,

다음으로 그 법칙을 방법론을 도입하여 실제적으로 풀어봐야 하며 마지,

막으로 이러한 풀이과정을 거친 대상의 움직임이 어떠한 성질을 가지고

있는가를 살펴보는 삼단계의 과정을 거쳐야만 한다.

그런데 이와 같은 삼단계의 과정을 거치게 되면 만유인력의 예에서도,

보듯이 법칙의 수준에서 기술되고 있는 물리적 대상의 존재론적 성질, ( )

과 방법론을 사용한 풀이과정이 이행된 이후의 대상의 존재론적 성질은

차이가 있는 듯이 보인다 예를 들어 만유인력 법칙의 풀이과정에서 질. , ‘

량중심 이나 환산질량 이라는 개념이 등장한다 그런데 여기서 유의해야’ ‘ ’ .

할것은 이 질량중심 이나 환산질량 은 코끼리 나 책상 과같은 물질, ‘ ’ ‘ ’ ‘ ’ ‘ ’ (

적 존재성을 가진 대상이 아니라는 것이다 이러한 가상적인 대상들이) . ( )

등장하는 이유는 만유인력의 법칙을 실제적으로 풀기 위해서는 방법론적, ,

으로 그러한 가상의 존재들을 전제하는 과정이 필요하고 이 과정을 거( ) ,

쳐 해석된 만유인력이라는 힘은 환산질량이 질량 중심을 기준으로 도는

환원된 힘으로 해석 될 수 있음을 보여주는 것이다 이러한 환원이 가능‘ ’ .

한 이유는 물리학적 관점에서 볼 때 개체 사이에 작용하는 상호작용이, ,

라는 만유인력은 하나의 개체에 속하는 힘으로 동등하게 변환될 수 있‘ ’

음을 의미하기 때문이다 이러한 환원을 거친 방정식에는 당연히 원래의.

만유인력 법칙에서 기술하고 있는 서로 인력을 받는 두 대상이 들어있다.

그리고 이 두 대상의 움직임은 이 환원을 거친 방정식에 의해서 결정된

다 이렇게 만유인력의 법칙에서 기술하고 있는 두 대상의 움직임은 일체.
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계 로 환원된 방정식에 의해서 결정되며 이 움(The One Body System) ,

직임은 이전 상태가 이후 상태를 유일하고 필연적으로 결정하며 이 시‘ ’ ‘ ’

간들에서 나타나는 상태들의 합이 전체 시스템의 상태를 결정하기 때문

에 만유인력의 법칙을 받는 대상의 존재론적 상태는 기계론에 대응되는,

것이다.

그렇다면 과학이론 또는 법칙의 수준에서 기술되고 있는 대상과 실제

적 풀이과정을 거친 과학이론 또는 법칙에 드러나는 대상은 다른 것일

까 근대적인 신념은 자연은 탐구되는 방법론과는 독립적으로 그 자체로? ,

존재하는 객관적인 존재성을 갖는다고 암암리에 전재한다 그러나 이러한.

신념은 주관과 객관의 구분의 경계가 허물어지는 현대의 철학적 관점에

서는 더 이상 지지되어질 수 없는 소박한 신념이다 현대는 과학이론이.

객관에 대한 완벽한 모사 라고 말하지 않는다 과학이론에 대한 현대적‘ ’ .

관점에 따르면 과학 활동은 완벽한 모사가 아니라 주관의 활동이 개입된,

하나의 이해 과정이다‘ ’ .4) 이렇게 과학이론에 대한 현대적인 철학적 해석

은 근대과학이 전제하는 객관적인 자연현상 객관적인 모사인 과학이론, ‘ - ’

이라는 이분법적 구조가 아니라 자연현상, ‘ 5)과 그 현상에 대한 주관에 의

한 이해로서의 과학이론 그리고 그 과학이론에 근거하여 구성된 모델 의, ’

관계를 일반적으로 받아들이고 있다6) 여기서 모델이란 내용에서가 아니. ‘

라 형식에서 서로 닮은 구조 동일성 을 의미한다 이러한 현대의 철학적’ .

관점에서 본다면 과학이론이란 주관의 활동이 포함된 하나의 이해의 과,

정이기 때문에 개개의 과학 이론이 제시하는 대상은 독립적으로 객관적, ‘(

으로 존재하는 자연현상 이 아니라 그 이론에 의해서 구성된 모델 임을) ’ ‘( ) ’

알 수 있다 따라서 에서 말하는 존재론적 규정이라는 철학적 작업의. OD

대상은 객관적인 자연현상 이 아니라 그 과학이론에 의해 구성된‘ ’ , ‘ 7) 모델’

4) 여기서의 이해 는 해석학적으로 해석하는 자와 해석되는 것을 포괄하는 존‘ ’

재론적 성격을 지니게 된다 참조. Gadamer, H. G. (1986), p. 102. .

5) 본 논문에서는 자연현상이 실재적으로 존재하는가의 문제는 다루지 않겠다, .

6) Kaplan, A. (1981), p. 263.

7) 여기서 쓰인 구성 이라는 개념은 과학사회학자들이 말하는 구성 의 개념과‘ ’ ‘ ’

는 다른 의미이다 우리가 자연이나 과학이론의 대상을 구성한다는 의미가.

아니라 모델이 과학이론에 의존함을 뜻한다, .



복잡성 과학의 새로운 패러다임과 전일론적 존재론 43

을 그 대상으로 하기 때문에 그 대상은 객관적 대상에 대한 완벽한 모사,

일 필요는 없다.

본 논문은 이러한 관점을 견지하면서 해당 과학이론이 제시하는 대상,

의 존재론적 규정을 그 이론의 풀이과정에 중점을 두어 그 이론이 사-

용하는 방법론에 근거하여 살펴보고자 한다 이러한 탐구를 위한 과학이- .

론으로 뉴턴역학의 현대적 발전인 해밀턴 역학과 비선형동역학 이론을

택하여 이 이론들이 제시하는 대상에 대한 존재론적 규정을 해보겠다.

해밀턴 역학2. 1.

년 해밀턴은 동역학의 일반적 방법 이라는 논문을 통해 물체들의1835 “ ” ,

집합적 운동에 대한 운동방정식을 동역학계의 운동량 성분과 그 위치를

결정하는 좌표성분이라는 이중성으로 표현했다8) 이 역학은 전체에너지는.

보존되는 보존계를 대상으로 하며 이 보존계에서는 구성요소들 간의 상,

호작용은 있지만 전체 에너지는 불변한다 좀더 자세히 말하면 해밀턴, . ,

역학에서 일반적으로 보존되는 물리량은 세 가지이다( ) .

전체 에너지 운동에너지 위치에너지1) : E = + =

   
 ≠

, 여기서 mi와 vi 는 번째 대상의 질량과 속도이고i ,

Vij는 두 대상 간에 상호 작용하는 위치에너지로서 와 에 의존적이다k j .

그리고 이 Vji는 상호작용의 힘인 Fji와 연관된다 위치에너지의 변: Fij =

화.

전체 운동량2) : P =  

전체 각운동량3) :    여기서, 는 번 째 대상이 회i

전축을 중심으로 도는 각운동량을 말한다.

이러한 보존량들은 뉴턴역학으로부터 도출될 수 있다 예를 들어 힘. ,

위치에 의존하는 과 관련된 크기는 뉴턴의 제 법칙인 위치에 대한 차( ) 1 2

8) Hamilton, W. R. (1835), p. 112.
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도함수로 부터 나온다: 
     -(1)9).

이러한 보존량에 대한 전제를 바탕으로 해밀턴 역학은 에너지 앞의 세, (

가지 보존량 중에서 가장 중요한 것 를 통해서 운동방정식을 기술한다) :

여기서 와 는 뉴턴역학에서 나타나는 운H = H(p, q) = E = const., p q

동량 과 위치 에 대한 일반화이다(p = mv) (q=r) .

따라서 H =  
  

 
   가 된다.

다시 뉴턴역학에서의 속도에 대한 정의 v = 

를 방정식 에 대입(1)

하면,
  

  
   


가 되어 만약 가 알려진다면 시간에 따, H ,

른 운동량과 위치의 변화는 이 운동방정식에 의해서 결정된다 이 방정식.

을 정준운동방정식 이라 한다 이 방정식canonical equations of motion .

은 차 항을 갖는 뉴턴역학과는 다르게 차 항들로 만 이루어져 있다, 2 , 1 .

비록 해밀턴 방정식의 변수는 뉴턴역학에 비해 두 배로 늘어났지만 운동,

방정식이 단순해졌다는 이점이 있다 예를 들어 개의 구성요소가 있는. , N

시스템에서 각각의 구성요소들의 위치는,    라는 정준방정식

에 대응되고 의 운동량은, 3N     에 대응된다 이렇게 개. N

의 구성요소를 갖는 시스템의 위상공간은 해밀턴 역학에서 의 차원을6N

갖는다 예를 들어 하나의 구성요소를 갖는 시스템에서 해밀토니안은. , H=

p2 이 되며 여기서 는 시간과 무관하게 일정하다 그리고 위치는/2m , p . q

= q0 이 되어 시간에 따른 선형적 변화를 한다 이렇게 해밀턴+ (p/m)t .

역학에서 위상공간의 점들은 초기조건과 해밀턴 함수에 의해서 오직 유

일하며 필연적으로 결정되기 때문에 다른 궤도는 다른 초기조건을 갖게,

된다 이는 위상공간 상의 점들은 해밀턴 역학에서 필요로 되는 그 시간. ,

에 가질 수 있는 모든 정보를 가지고 있음을 의미한다 이러한 성질들은. ,

앞서 서론에서도 말했듯이 기계론적 성질을 보여주고 있는 것이다 해밀, .

9) 이러한 차 도함수의 성질로부터 고전역학이 시간에 대해 가역적이라는 성2

질이 도출된다.
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턴 역학이 이러한 기계론적 존재성을 가지게 되는 가장 중요한 근거는,

전체 시스템의 본질이 위상공간의 점들로 분해되며 이 점들의 합 이, ‘ ’

전체의 본질을 이루기 때문이며 이러한 성질은 바로 해밀턴 역학의 적, ‘

분 가능성 때문이다’ .

여기서 해밀톤 역학에서 말하는 적분가능함 의 의미를 살펴보자 이를‘ ’ .

위해서 간단한 일차원 조화진동을 예로 들었을 때 그의 해밀턴 함수는,

H = p2/2m + kq2 이 된다 여기서 은 질량 는 진자계수이다 이/2 . m , k .

방정식을 간단하게 하기 위해서 대신에p, q J(q= 
   


와), 

(     

   로 치환하면 여기서) ( 는 각변수 는 작용변수, J , 는

각진동수), H =  가 된다 이렇게 변환된 방정식은 운동량을 나타내는J .

작용변수 에만 의존한다 여기서‘ J’ . 
  

  가 되어, 의 시간

적 변화는 시간에 따른 선형함수인      가 되며 는 와 상관관H

계에 있기 때문에 에너지는 초기 속도와 가속도에 비례하게 된다 그리, .

고 이 는 와 관계하기 때문에 시간에 따른 운동의 형태는 운동에너지H J ,

에만 의존하는 선형함수의 모습이 된다 이렇게 되어 위상공간 상의 점. ,

들은 그 시간에 해당되는 모든 정보를 가지고 있게 된다 따라서 해밀턴.

역학이 해석하는 조화진동의 움직임은 위상공간 상의 점들의 집합으로서

기계론적 세계상에 대응되는 것이다 그리고 이러한 기계론적 성질로부터. ,

작은 원인은 작은 결과를 일으키고 큰 원인은 큰 결과를 일으킨다 는‘ , ’

선형적 성질10)도 함께 도출된다.

여기서 로부터, p, q J, 로의 변수들의 전환시키는 방법을 해밀턴 역학

은 정준변환 이라 한다 위의 예에서 보듯이 정준변환을 통해서 운동‘ ’ . ,

량 와 상호작용을 나타내는 위치에너지를 대변할 수 있는 로 나타내어p q

진 일차원 조화진동은 운동량을 나타내는 에만 의존하는 움직임으로 변J

환되었다 여기서 우리는 정준변환을 통해서 위치에너지가 상쇄 되었. ‘ ’

음을 알 수 있다11) 이렇게 정준변환을 시행한 이후의 위상공간에서 한.

10) 선형성: 1. Additivity property: f(x +   y) =   f(x) +   f(y), 2. Homogeneity
property: f(αx) = α    f(x) .
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점의 운동은 에만 의존하는 주기운동이 되었으며 시간에 따른 운동량은J ,

불변하게 된다 이렇게 상호작용하는 위치에너지를 정준변환을 통해서 상.

쇄시킬 수 있느냐의 가능성은 해밀턴 역학의 적분가능성과 연관된다.12)

해밀턴 역학적 대상의 존재론적 규정2. 2.

해밀턴 역학은 뉴턴역학을 바탕으로 발전된 역학이다 따라서 뉴턴역학.

과 해밀턴 역학은 동일한 물리학적 전제들을 바탕으로 한다 그 전제 중.

에서 철학적으로 중요성을 띄는 것으로 어떤 시스템의 본질 은 에너지, ‘ ’

또는 힘이 원인이 되어 발생된 움직임 이라는 것이다 즉 에너지 또는‘ ’ . ,

힘은 위상공간 위에서 그 시스템의 구성요소들의 움직임을 변화 시키는‘ ’

원인이 되며 이 힘에 의한 운동은 위상공간 상에서 구성요소들의 움직임,

으로 대변된다 따라서 위상공간 상의 점들은 이 에너지에 의한 움직임. ‘ ’

을 보여주기 때문에 각 점들이 나타내는 성질은 해당시간의 시스템의 본,

질은 충분히 그리고 완전하게 기술하고 있다고 전제한다‘ ’ ‘ ’ .

그런데 앞에서 말했듯이 해밀턴 역학에서 대상의 시간에 따른 움직임,

을 얻기 위해서는 정준변환을 거쳐야만 되고 이는 적분이 가능, ‘ ’13)해야만

함을 의미한다.14) 이렇게 해밀턴 역학에서 위상공간 상에 있는 점들의 움

직임은 적분이 가능한 형태로 나타난다 이 말은 위상공간 상의 점들의. ,

움직임은 적분적 임을 의미하는 것이고 그 점들의 움직임이 바로 해밀턴‘ ’ ,

11) 참조Prigogine, I. (1993), p. 158. .

12) 위치에너지의 상쇄가 해밀턴 역학에서 적분가능성 을 위한 근본적 성질이‘ ’

된다는 것은 푸앵카레의 연구로부터 유래한다. I. Prigogine, Das Paradox

참조der Zeit, p. 158. . Muenchen, 1993.

13) 적분가능성 의 요건은 단지 해밀턴 역학에만 통용되는 것만은 아니다‘ ’ .

14) 해석적 방법을 사용하기 위해서 과학이론에는 필수적으로 근사화 가 행해, ‘ ’

지기도 한다 본 논문에서 말하는 해석적 방법으로 풀려질 수 있음 이란. ‘ ’

이 근사화가 이루어지기 이전의 방정식을 말하는 것이 아니라 근사화 가,

능성까지를 포함하는 넓은 의미이다 물론 지금은 컴퓨터를 이용한 대입. ‘

법 으로 해밀턴 역학에 의해 제시된 방정식의 해를 구하기도 한다 하지만’ .

본 논문에서는 해밀턴 역학에 대한 철학적 해석을 주제로 하기 때문에 이

방식은 제외하기로 한다.
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역학의 존재론적 규정의 대상이기 때문에 해밀턴 역학의 존재론적 규정,

은 적분 에 대한 철학적 해석을 통해서 얻어질 수 있다는 말을 뜻한다‘ ’ .

그럼 이제 이 해밀턴 역학의 존재론적 성질을 규정하는 적분가능성의

개념에 대해서 살펴보자 적분 미분 개념은 주지하다시피 뉴턴에 의해. ‘ ’, ‘ ’

서 발명되었다 그는 자신의 법칙으로부터 시간에 따른 시스템을 구성하. ‘

는 대상들의 움직임을 얻을 수 있는 방법론을 개발할 필요성을 느꼈고’ ,

이를 위해 그 당시 파스칼에 의해 이미 알려졌던 이항식 전개법인 삼각‘

형법 에 도움을 받아’ 15) 유율법 the method of fluxions16)을 계발하였

다.17) 이것이 현대의 미분법의 효시이다 뉴턴의 미분법을 현대적 관점에.

서 해석해 보자.18) 이를 위해 가속도 운동을 하는 물체를 예로 살펴보자.

거리y( )

o z=ax m 시간x( )

위의 그림처럼 등속도 운동이 아닐 경우 시간에 따른 거리의 궤적은, ,

15) 뉴턴은 파스칼의 삼각형 을 정식화하여‘ ’ (P +PQ)


= P



+ 


AQ

+ 
 

BQ + 
  

로 일반화하였다 윌리엄 던헴 지음 조정CQ + .... . (

수 옮김 참조) (2004), pp. 295-305 .

16) Robins, B. (1726), p. 233.

17) 뉴턴의 유율법은 함수의 적분은 단순히 미분하는 절차의 역이라는 결정적

인 통찰에 기초를 두고 있다 미분을 기본 연산으로 간주함으로써 뉴턴은.

넓이 접선 곡선의 길이 함수의 최대값 최소값 구하기 같이 무관하게 보, , ,

이는 문제들이고 결국은 동일한 해석적 해법에 기초함을 보였다 뉴턴은.

이 이론에 대해서 년에 이라1671 “De Methodis Serierum et Fluxionum”

는 논문을 썼지만 출판하지는 못했는데 년에 에 의해 영, 1736 John Colson

어 번역으로 출판되었다.

18) Simonyi, K. (1995), p. 288.
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직선이 아닌 곡선이 된다 이런 가속도 운동에서 속도는 시간에 대한 거.

리의 비례로 얻어질 수가 없다 따라서 뉴턴은 역사적으로는 라이프니츠. (

와 더불어 이 문제를 해결하기 위해서 천재적인 발상을 하게 된다 가속) .

도운동인 경우에 시간 변화에 따른 변화량을 구하기 위해 시간의 변화, ,

량을 에 가까운 아주 작은 단위로 하는 것이다 그렇게 되면 시간 단위0 .

당 변화율은 적어도 그 시간 안에서는 곡선이 아닌 직선 이 된다 이러( ) ‘ ’ .

한 이항정리와 극소 시간 변화량과 더불어 곡선에 의해 이루어진 도형의,

넓이는 축에 대한 지수함수에 비례한다x 19)는 사실을 종합하여 뉴턴은,

도함p.수를 구하는 방법을 발명한다 위 그림에서 시간의 변화량을 극소: ,

의 값 라 하자 그러면 시간 가 지난후의 면적의 넓이는o . o z + oy =

a(x +o) 이고 우변을 이항정리를 사용해서 풀면, , z + oy =

ax m+oamx m-1+o 2 am(m-1)2 x m-2 가 된다 는 극소의 값이므로 제. o

곱 차수 이상의 항은 무시를 하는 방법을 사용하여 위의 방정식을 정리

하면, y = 이라는 값의 극소만큼의 변화량에 따른 값을 구x ( ) y

하는 방법이 구해진다 그리고 이 방법의 역함수가 적분이 된다 즉. . , z =

ax 일 때의 도함수 y = 가 구해지고 역으로 적분이 가능하

다.20) 이렇게 결국 적분이 가능하기 위해서는 해당 시스템은 점이라는,

극소량으로 쪼개어짐이 가능해야만 하며 이 쪼개어진 극소량들의 합, ‘ ’

이 가능해지기 위해서는 그 극소량의 움직임을 타나내는 곡선이 매끄‘

러워야 한다 는 성질을 만족시켜야 한다 이러한 두 성질이 만족되면’ . ,

극소량이라는 부분들의 합은 전체 시스템을 구성하게 된다.

그러면 이제 지금까지의 논의를 종합하여 해밀턴 역학이 제시하는 대,

상의 존재론 성질을 정리해 보자 우선 해밀턴 역학을 사용할 수 있기. ,

위해서는 새로운 변수를 도입하는 정준변환을 거쳐야만 하고 이는 적분,

가능성과 물리학적으로 동일한 의미이다 그리고 이 변환을 통해 상호작.

용을 나타내는 위치에너지가 상쇄된다 그리고 이 새로운 변수들은 위상.

공간 상의 점들에 대응되며 이 점들의 성질은 위치에너지에 의해서 규정,

19) 이러한 사실은 뉴턴 시대에도 이미 알려져 있었다.

20) Prigogine, I. (1983), p. 64.



복잡성 과학의 새로운 패러다임과 전일론적 존재론 49

되며 시간에 따른 변화는 위에서 살펴보았듯이 선형적이다 이렇게 해밀, , .

턴 역학에 의해 제시되는 대상의 본질은 위상공간상의 점들의 궤도이고,

이 궤도들은 점들의 시간에 따른 집합으로 이루어진다 그리고 이 점들은.

이전의 하나의 상태가 오직 유일하게 미래의 하나의 상태를 결정하는 결

정론적 인과성에 의해서 얻어지게 된다 이러한 모든 성질들을 종합하여.

내려진 철학적 해석이 바로 해밀턴 역학의 존재론적 규정은 기계론적이‘

다 라는 것이다’ .

이체문제2. 3.

여기서는 서론 부분에서 잠깐 살펴본 고전역학의 대표적인 예인 이체

문제를 물리학에서 어떻게 푸는가를 살펴봄으로서 이에 대한 존재론적

규정을 해보겠다 년에 프린키피아 을 계기로 그 당시 무명에 가. 1687 < >

깝던 뉴턴은 과학역사상 가장 위대한 물리학자로 인정받게 된다 이 책에.

서 그는 이전의 여러 학자들에 의해 밝혀진 다양한 역학 법칙들을 하나

의 통합적 체계 내에서 설명하였고 그러한 설명의 중심에 있는 법칙이,

만유인력이다 만유인력의 법칙은 질량을 가진 물체 사이에 발생하는. , ( )

상호작용 하는 힘에 대해 기술하고 있다‘ ’ .21) 따라서 상호작용 을 기술하는‘ ’

이 법칙이 개체중심적 환원론 을 전제로 하는 기계론적 세계상 을 제시‘ ’ ‘ ’

한다는 말과는 거리가 멀어 보인다 그렇다면 고전역학을 거대한 시계. ‘

에 비유하는 것이 잘못된 것일까 물론 아니다 서론에(Die große Uhr)’ ? .

서도 말했듯이 과학이론이란 객관적으로 존재하는 자연현상에 대한 완, ( ) ‘

벽한 모사 가 아니다 과학이론은 해당 자연현상을 나름대로 해석하여 그’ .

현상의 본질이라 여겨지는 현상이 가지고 있는 규칙성을 법칙화하는 학

문이다 뉴턴의 만유인력 법칙도 물체들의 움직임의 원인은 물체들 사이. , ‘

에 서로 끌어당기는 힘 이라 규정하면서 그 힘이 어떻게 법칙화될 수 있’

는가를 보여주는 이론이다 그런데 이 법칙에 대한 존재론적 규정이란. ,

법칙을 대상으로 하는 것이 아니라 이 보다 한걸음 더 나아가 만유인력, ,

의 힘을 받은 대상은 어떠한 형태의 움직임을 보이며 그 움직임은 어떻,

21) 이무현 옮김 규칙 참조I. Newton( ) (1997); 3. .
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게 규정될 수 있는가를 살펴보는 작업이다 그럼 이제 본격적으로 만유인.

력의 힘을 받은 대상이 어떤 움직임을 보이며 그 움직임은 어떻게 규정

되는가를 살펴보자.

두 물체의 위치를 각각 X1, X2라 하고 각각의 질량을, m1과 m2이라고

할 때 두 물체는 뉴턴의 제 법칙에 의해서, 2 , F12(X1, X2) = m11 ;
F21(X1,X2) = m22 가 되기 때문에 여기서 개의 차 미분방정식- (1) , 6 2

이 만들어진다 따라서 이 방정식을 풀기 위해서는 개의 적분상수가 필. 12

요하다 그런데 이 문제는 그 자체로는 풀리지 않는다 고전역학은 이 문. .

제를 풀기 위해서 질량 중심, (CM =   
  

을 기준으로 돌고 있)

는 하나의 물체라는 일체문제로 변환한다 이렇게 질량 중심의 개념을 도.

입하고 변수들을 선형적으로 결합시키거나 분해할 수 있다는 전제를 사,

용하면, m11 + m22 = (m1+ m2) 이 된다 이 방정식을 적분cm = 0 .

하면 질량중심의 운동방정식이 얻어지고 여( (Xcm = (c1/M)t + c2/M,

기서 는 상수벡터 은 이 운동방정식이 의미하는 바는c1, c2 , M m1+m2),

질량중심은 멈추어 있거나 일정한 등속도로 움직인다는 뜻이다 이렇게.

질량 중심의 운동의 모습은 이체문제를 일체문제로 환원시키는 과정에서,

도출된다 그리고 이 도출을 위한 전제는 변수들의 선형적 결합과 분리의.

가능성이다.

이제 여기에 전체 운동량과 각운동량이 보존된다는 전제와 뉴턴의 제

법칙을 사용하면3 , F12(X1, X2) = -F21(X1,X2) = -F        
  

이 된다 이를 앞의 방정식 을 이용하여 정리하면. (1) ,

     
  

          
  

가 된다 이를.  ≡  


,

X≡ X1 + X2 를 사용하여 정리하면,          


가 된다 여기서(

는 환산질량 이다 이렇게 이체문제는 변수들의 선형적reduced mass ).

결합을 전제하여 얻어진 질량 중심과 더불어 뉴턴의 역학법칙을 이용하

여 정리하면, 라는 환산질량이 질량중심 주의를 도는 일체문제로 환원

된다.
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그런데 고전역학에서 이체문제를 일체문제로 환원하는 방법론을 사용

하는 궁극적인 목적은 과 의 시간에 따른 운동방정식을 얻기 위해m1 m2

서이다 이 운동방정식은 질량중심을 기준으로 한 새로운 위치 백터. ,

를 정하고 이를 질량X1', X2'(X1 = Xcm + X1', X2 = Xcm + X2') ,

중심의 정의와 성질 정지해 있거나 등속도 운동을 한다는 과 연관시키면( ) ,

질량중심에 대한 과 의 상대 가속도를 얻을 수 있다 그런데 이 상m1 m2 .

대가속도에 대한 값을 구하기 위해서는 앞에서 말한 질량중심의 운동을

나타내는 상수 백터 의 값을 알아야 한다 이를 얻기 위해서는 다c1, c2 .

시 을 이체계 의 원점으로 놓는 상대적 운m1 (The Two Body System)

동이라는 가정이 필요하다 이 이체계의 상대 운동 방정식은 보통 차원. 3

직교좌표로 나타낸다 이 차원 직교 좌표계에서 초기조건과 같은 적합. 3 ,

한 관측 자료의 값을 적용시키면 만유인력의 법칙에서 파생된 방정식,

을 풀기위해 필요한 개의 적분상수가 모두 구해진다 따라서 이체계(1) 12 .

는 적분가능한 상태가 되어 해결된다.22)

결국 이체계를 일체계로 환원하는 이유는 의 운동방정식을 푸, m1, m2

는데 필요한 적분상수를 구하기 위해서이다 이 환원론적 방법론을 통해.

적분 상수가 얻어졌기 때문에 과 의 운동방정식은 당연히 적분 가, m1 m2

능하다 따라서 과 의 시간에 따른 정확한 위치와 속도를 알 수 있. m1 m2

게 된다 이렇게 만유인력의 법칙을 따른 물체의 움직임을 구하기 위해서.

는 만유인력의 법칙 만으로는 구해질 수 없고 일체계로의 환원이라는, ,

방법론을 사용하여 그 시스템을 적분가능하게 만들어야 한다 이러한 적.

분가능한 시스템은 앞서도 말했듯이 위상 공간 상의 점들은 시간에 따, ,

라 오직 유일한 값을 구할 수 있으며 전체 시스템은 이 점들의 합이 되,

므로 기계론적 존재성을 갖게 된다, .

방금 말한 이 모든 것들을 한 마디로 말하자면 이체문제는 그 자체로,

22) 우선 푸아송 괄호 를 만족시키는 개의 운동상수 적( <H,f> = -df/dt = 0) 6 (

분상수 가 구해지면 이 시스템은 각운동량 과 전체 에너지 가 보존된) , L E

다 이를 통해서 이체문제에서 궤도 결정에 필요한 개의 궤도 요소 장반.. 6 (

경 이심률 궤도면 기울기 승교점 경도a, e, i,  근일점 인수,  근일점,

통과시각 가 구해질 수 있다 이시우 안병호 참조T) . / (1997), pp. 13-35 .
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는 적분가능하지 않기 때문에 일체문제로 전환하여 적절한 적분상수를,

구하는 문제이다 즉 이체문제의 해결가능성은 적분가능성 을 의미한다. , ‘ ’ .

그리고 앞에 말했듯이 적분가능성이란 해밀턴 역학에서 정준변환의 가능

성을 의미한다 프리고진 은 이러한 과정에 대해서 다음과. (I. Prigogine)

같이 설명한다.23) 이체문제를 일체문제로 환원시키는 것은 해밀턴 역학의

관점에서 보자면 정준변환을 찾는 것이다 예를 들어 정준변환 이전의, . ,

방정식의 변수는 라 하고 이 후는 라 하자(q,p, H(q,p)) , (Q, P, H'(Q,P)) .

그리고 이러한 변환은 위에서 이체계를 일체계로 변환하는 과정에 해당

된다 그리고 이 변환을 통해서 얻어지는 새로운 해밀토니안 는 일반. H'

적으로 시간에 상관없이 일정한 값을 갖는다 그런데 이러한 새로운 해밀.

토니안 를 찾는 함수 는 앞에서도 말했듯이 적분이 가능하기 위해서H' f

는 운동량에만 의존하여야 한다.24) 이러한 의미에서 이체계가 일체계로

환원 될 수 있어야만 그 계가 적분가능해지고 따라서 대상의 시간에 대,

한 결정론적 궤도가 구해질 수 있게 되는 기계론적 존재성을 갖게 된다.

삼체문제3. 1.

앞장에서 만유인력의 힘을 받는 이체문제를 살펴보았다 그런데 만유인.

력이란 그 정의에 있어서 물체들 사이에 서로 끌어당기는 힘을 의미하기,

때문에 해당 시스템의 구성요소가 세 개 이상인 경우에도 당연히 서로,

간에 만유인력이 작용한다 그런데 뉴턴의 만유인력의 법칙은 왜 유독 두.

물체 이체계 만을 고려하는가 당연히 그 이유가 존재한다 결론부터 말( ) ? .

하자면 삼체이상의 문제는 비록 전체에너지가 보존되는 해밀턴계이지만, ,

고전역학적으로 해결되지 않기 때문이다 삼체문제는 태양계의 안정성과.

관련되어 이미 년 뉴턴의 프린키피아가 출판되었을 당시부터 거론되1687

었던 문제였고25) 삼체문제에 대한 본격적인 수학적 접근은 년 푸앵1889

23) Prigogine, I.,    ′ The End of Certainty, New
York, 1997, p. 111.

24) Michael Efroimsky, "Gauge Symmetry of the N-body Problem in the

Hamilton-Jacobi Approach", Journal of Mathematical Physics, Vol. 44,

참조pp. 5958-5977, pp. 5964-5966. .
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카레에 의해서 이루어졌다 비록 그는 삼체문제를 완전히 해결하지는 못.

했지만 더 나아가 그의 결론이 완전하게 옳은 것은 아니었지만 삼체문( ),

제를 기술하는 방정식의 대다수가 해석적으로 풀리지 않는다는 적분( ) -

불가능하다는 증명을 통해 장기적으로 태양계는 불안정하다는 결론을-

이끌었다26).

푸앵카레는 삼체문제가 해석적으로 풀리지 않는 이유는 바로 상호작용,

을 나타내는 위치에너지가 정준변환을 통해서 소거될 수 없기 때문이라

는 사실을 알아내었다 더 나아가 정준변환이 존재하지 않는 이유는 만유.

인력이 원인이 되어 나타나는 간섭작용 때문에 변수들이 주기운동을 하

지 않기 때문이라는 사실도 발견했다 앞의 조화진동의 예에서도 보았듯.

이 위치 는 각변수, q 의 주기함수이다 따라서 일차자유도를 갖는 적분.

가능한 시스템은 주기를 가진 타원운동으로 나타낼 수 있고 이차 자유도,

를 갖는 시스템은 토로스로 나타낼 수 있다 그런데 주기운동을 하지 않.

는 변수를 갖는 해밀턴계에서의 해밀턴 방정식 는H' H0(p) +  의V(q)

형태로 나타낼 수 있으며 이 방정식의 뜻은 정준변환 이후의 해밀토니안,

는 정분변환 이전의 해밀토니안인 자유해밀토니안 더하기 상호작H' Ho

용을 표현하는 위치에너지의 합이라는 말이다 그런데 이러한 해밀토니안.

은 적분가능하지 않다는 사실을 푸앵카레는 보여주었다.27) 그 이유는 방

금 말했듯이 삼체문제에서 발생되는 만유인력이 물체들 사이의 상호작용,

으로 작용하여 공명현상을 이끌게 된다는데 놓여있다 즉 공명현상은 자. ,

유도 사이에 강한 상호작용을 일으킨다 이러한 현상을 기술하려면 작용. ,

25) 당시에도 뉴턴 법칙만으로는 천체의 움직임을 완벽하게 설명하는데 부족하

다는 문제가 제기되었다 이체문제에서의 미미한 점은 뉴턴 베르누. , , 1710

이 베르누이 오일러 등에 의Johann Bernoulli, 1734 Daniel Bernoulli, 1744

해서 거의 완벽하게 해결되었으나 태양 지구 달과 같은 삼체문제는 두, , ,

방향으로 연구가 진행되었다 첫 번째는 이 운동에 대한 일반적인 공리.

를 발견하려는 노력이었고 다른 하나는 주어져 있는 해법으로부터theorem ,

의 근사 을 찾는 노력이 있었다approximation . June Barrow-Green

(1997), p. 14.

26) 참조Poincarè, H. (1993), p. 389 .

27) Jose, J. V. & Saletan, E. J. (2002), pp. 468-473, Poincarè, H. (1993),

참조p. 162 .
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변수인 에만 의존하는 교란이 없는 해밀토니안J H0과 더불어 교란이 원

인이 되어 나타나는 작용변수에 의존하는 각변수 를 고려하여야만 한

다: H' = H0 +  (J, 만약 여기서 정준변환을 통해).  (J, 가 상쇄된)

다면 는 운동상수가 될 것이고 우리는 두 개의 교란되지 않은 진동수, J ,

이것은 오직( H0에만 의존한다 를 얻게 될 것이다 그러게 되면 이 시스) .

템은 적분가능하다 그런데 공명에 의한 교란이란 구성요소들 사이의 상.

호작용이기 때문에 항,  (J, 은 사실 적합한 기술이 아니고 정확하게 표)

현하면 위치에너지가 고려된 항이어야만 한다: V(J, 이 항을 풀기위).

해서는 다시 교란에 해당되는 새로운 작용변수 가 도입되어야만 한다J' .

여기서 작용변수 는 교란에 의한 주기J' 에 의존하며, 는 각변수 의
도함수 이다:  = d /dt =  따라서 공명현상은 두 개의 상호 연.

관된 주기운동에서 에너지의 변화를 일으켜서 주기의 변화를 유발한다.

이렇게 되어 삼체계 이상에서는 주기운동이(The Three Body System)

나타나지 않는다.

즉 이 문제는 교란이 일어난 후의 주기함수를 찾는 문제이다 교란이, .

일어나기 전의 주기함수를 라 하고 교란을 타나내는 함수를 라f(t) , g(t-p)

고 한다면 삼체문제란 교란이 일어난 후의 함수 의 주기를 찾는 문, g(t)

제이다 여기서 와 는 주기함수이므로; g(t)-g(t-p) = f(t) -(1). f g , f(t) =

∞

∞ 여기서(    이고) , g(t) = ∞

∞ 로 표현되고 위의 방,

정식 을 사용하면(1) , g(t)-g(t-p) = ∞

∞     = f(t) =

∞

∞ 이 된다 이를 정리하면. , =   


가 되어 적절한, 

을 찾으면 우리가 원하는 주기함수를 구할 수 있다 즉 해당되는 푸리에. ,

급수를 구할 수 있으면 주기함수를 구할 수 있다 그런데 문제는 그리 간.

단하지 않다 모든. 은 간섭 또는 섭동을 나타내는 분모 를 가지고 있

고 여기서 심각한 문제가 발생된다, : 가 유리수인 경우에 분모는 이, 0

되어 이 급수는 수렴을 하지 않게 된다, .28) 이것이 바로 푸앵카레가 말하

28) 그러나 태양계의 안정성에 대한 불안감을 갖는 것은 시기상조이다 많은.
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는 위험한 분모 라는 현상이다 즉 교란이 일어나기 전의 주기‘ ’ . , n11
과 공명현상에 의한 교란을 나타내는 주기 n2 의 합이 이 된다면 주2 0 ,

기는 더 이상 규칙적이지 않고 카오스적 현상이 나타난다.29) 이렇게 삼체

이상의 문제30)는 고전역학으로는 해결되지 않는다.31)

삼체문제가 고전역학적 방법론으로 해결되기 위해서는 이체문제에서-

처럼 적분이 가능해야만 하는데 이는 상호작용을 나타내는 위치에너지- ,

가 개체의 성질인 운동에너지로 환원되어야만 한다는 것을 의미한다 여.

기서 환원이란 적합한 정준변환을 찾는다는 말이다 이 정준변환을 통해.

서 개체 사이의 상호작용인 만유인력을 나타내는 위치에너지가 대상자체,

의 성질인 운동에너지로 바뀌어야만 한다.32) 그런데 삼체계 이상에서는

이러한 변환이 불가능하다.33) 이를 철학적으로 해석해보면 삼체계 이상,

수학자들은 푸앵카레의 결론에 의구심을 가졌고 결국 년 세 명 의 수, 1962

학자들은 자신들의 이름을 딴 이론을 통해 다체문제에 대한 실제적KAM- (

으로는 다체문제에 대한 것뿐만이 아니라 모든 보존계에 대하여 적분가능)

성에 대한 명확한 답을 하였다 이론에 따르면. KAM- , 가 무리수인 경우

에는 1- 가 값이 적어지기는 하지만 결코 정수가 되지 않으므로 분

모가 이 되는 경우는 발생하지 않는다고 한다 물론 분모가 적으면 푸리0 .

에 급수는 아주 빨리 수렴되지 않으므로 적분 불가능하다는 관점에서는 
가 유리수이든 무리수이든 결과는 마찬가지 일 것이다 그러나 유리수에.

비해서 한 단계 더 높은 집합 밀도를 갖는 무리수에는 쉽게 유리수화‘

할 수 있는 유리수에 접근하는 무리수도 있지만 쉽게 유리수화 할( )’ , ‘

수 없는 무리수가 훨씬 많으므로 이 경우에는 푸리에 급수는 아주 빨리’

수렴한다 따라서 태양계의 안정성의 관점에서 보면 초기 상태의 상황에.

따라서 안정성이 결정되고 초기 상태에서 분모가 유리수가 될 확률은 무,

리수가 될 확률보다 훨씬 적으므로 안정성이 우세한다는 결론이 도출된다.

참조Arnold, V. I.(1963), p. 10, Moser, J. (1967), p. 138 .

29) I. Prigogine, The End of Certainty, p. 111, New York, 1997.

30) 실제적인 삼체문제는 우리의 대략적인 접근법도 허용되지 않을 만큼 복잡

하다 따라서 단순화된 모델에 접근하는 방법이 행해지고 있다 예를 들어. . ,

세 물체 중에서 한 물체는 질량을 갖지 않고 세 물체가 동일한 평면에서,

운동을 하는 경우를 들 수 있다 이를 제한적인 삼체문제. ‘ restricted three

라 한다body problem’ . Hubbard, B. B. & Hubbard, J. (1994), p. 89.

31) Knudsen, J. M. & Hjorth, P. G. (2000), p. 364.

32) Progogine, I. (1993), p. 49.
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에서는 그 계의 운동에 결정적인 영향을 미치는 요인은 운동에너지로 환

원되지 않는 섭동에 의한 위치에너지이다 따라서 삼체문제에서 그 계를.

운동성을 완전하게 기술하기 위해서는 개체들로 환원되는 요소들만으로‘ ’

는 부족하다 이렇게 삼체계의 운동성을 규정하는 본질은 개체의 성질로. ,

환원되지 않는 정준변환이 되지 않는 위치에너지 라는 개체들 사이의( ) ‘ ’

관계성 에 놓여있음을 의미한다 여기서 관계성 이란 개체로는 환원되지‘ ’ . ‘ ’ , ‘

않으면서 그 시스템의 본질적 특성을 이루는 개체들 사이에 작용하는 성

질 이라고 규정하겠다’ .34)

이상의 삼체문제를 통해 살펴보았듯이 관계 를 본질로 하는 시스템은, ‘ ’

환원된 개체 또는 개체의 성질 을 본질로 하는 시스템에서 사용하는‘( ) ( )’

방법론으로는 그 본질을 기술할 수가 없다 그 이유는 당연히 그 시스템.

의 본질이 어디에 있는가하는 문제와 연관성을 갖는다 해밀턴 역학에서.

는 해당 시스템의 운동성을 그 시스템의 본질이라 상정한다 그리고 이.

본질은 해밀턴 역학의 방법론을 사용하게 되면 개체로의 환원을 통해 설,

명되어 진다 여기서 해밀턴역학의 방법론을 통해서 밝혀진 시스템의 본.

질이란 결국 요소의 성질들이 모여서 전체 시스템을 구성하게 되며 미, ,

래의 상태는 앞선 상태에 의해서 유일하고 필연적으로 결정되므로 이 시,

스템의 본질인 운동성은 기계론적이라는 존재성을 갖는다는 것이다 그런.

데 삼체문제는 이와는 다르게 시스템의 성질이 개체로 환원되지 않는다.

따라서 삼체계의 운동성은 기계론적 존재성을 가질 수 없다는 결론이 나

온다 그렇다면 이렇게 해밀턴 역학으로는 해결할 수 없는 상호작용 이. ‘ ’

본질을 이루는 시스템은 결국 해밀턴 역학과는 상이한 방법론을 가지고

탐구될 수밖에 없을 것이다 그럼 이제 해밀턴 역학과는 다른 방법론을.

사용하는 구체적인 과학이론을 살펴보면서 그 이론이 제시하는 대상의,

존재론에 대한 규정을 해보자.

33) Progogine, I. (1993), pp. 49-50.

34) 여기서 관계 란 개념은 앞에서의 이체문제 에서 말하는 상호작용 과는 다‘ ’ ‘ ’ ‘ ’

른 개념이다 이체문제에서도 보았듯이 이체문제에서의 만유인력이라는 상.

호작용은 개체의 성질로 환원가능하다 본 논문에서 쓰는 관계라는 개념은.

선형화 과정을 통해서도 궁극적으로 개체의 성질로 환원되지 않으면서 그

시스템의 본질을 이루는 특징을 의미한다.
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복잡계3. 2.

보통 복잡계라는 용어는 단순계와는 대조적으로 비선형적이고 구성요,

소간의 다층적인 관계로 인해 환원론적 방법으로는 설명되지 않는 창발‘

성 을 갖는 시스템을 의미한다Emergence’ .35) 이러한 의미에서 복잡계의

특징으로 전체는 부분의 합 이상‘ (Das Ganze ist mehr als die Summe

이라는 비유가 즐겨 쓰인다der Teilen)’ .36) 이러한 복잡계에 대한 기술을

통해 볼 때 이 시스템의 본질은 전체를 구성하는 부분들인 구성요소의,

성질에 있지 않고 그 구성요소들의 관계성 또는 관계맺음 에 있음을 알‘ ’ ‘ ’

수 있다 따라서 이 시스템의 완전한 기술을 위해서는 그 관계성을 고려. ‘ ’

하는 방법론이 사용되어야만 한다.37)

구제적인 논의를 위해서 본 장에서는 두 가지 예를 들어 보겠다 제어:

변수 가 해당 시스템의 외부에 있는 경우와 내부에 있control Parameter

는 경우를 살펴보겠다 제어변수는 새로운 질서 창발성 가 나타나는 임계. ( )

점을 기술하는 변수이다 그런데 이 제어변수가 시스템의 내부에서 자생. ‘

적으로 발생하는지 아니면 외부에서 임의로 조절해 주어야 하는지에 따’

라서 크게 자기조절임계시스템 과, ‘ Self-Critical Organization(SCO)’

단순한 자기조직 임계시스템 으로 나누어진다‘ Critical Organization’ .38)

본 논문에서는 제어변수가 외부에 존재하는 예로서 로렌츠 시스템을 살

펴볼 것이고 자기조절임계시스템으로는 현재 여타의 학문 영역에서 응용,

되고 있는 그물망 이론에 대해서 살펴보겠다‘ ’ .

35) 스텐포드 철학사전에 따르면 최초로 창발 이라는 개념을 철학적으로 정의, ‘ ’

한 사람으로 년1875 Problem of Life and Mind를 쓴 George Henry

를 든다 일반적으로 세기 후반에 나타난 창발론자들은 비환원론Lewes . 19

적인 생기론적인 질적 특성이나 과정을 창발이라 의미했다. O'Connor, T.

참조&, Hong, Y. W. (1992), p. 7 .

36) 이 비유에서 창발성에 대응되는 개념이 이상 이라는 단어이고 이‘ (mehr)’ ,

성질은 구성요소 부분 에 의해서는 기술될 수 없다( ) . Gallagher, R. &

Appenzeller, T. (1999), p. 78.

37) Holland, J. H. (1995), p. 5.

38) Hu, C. K. & Kuo, W. C. (2005), p. 120.
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로렌츠 시스템3. 2. 1.

기상학자였던 로렌츠 는 기상현상의 장기적MIT Edward N. Lorenz

예측불가능성을 과학적으로 규명을 하려 노력하였고 이러한 노력의 결실,

로 년에 비선형적 동역학구조를 갖는 로렌츠 모델을 만들었다1963 .39) 로

렌츠 모델을 만들기 위해서는 우선 유체의 움직임을 기술하는 레일리 베, -

나르드 흐름Rayleigh-Benard flow40)이 필요하다 레일리 베나르드 흐름. -

은 상부와 하부의 온도차,  가 있는 유체에서의 대류현상을 나타내는T

비선형 방정식이고 기본이 되는 힘은 부력 열확산 에너지 그리고 점성, ,

력이다 다른 모든 물리적 법칙과 마찬가지로 여기서도 구체적인 방정식. ,

을 만들기 위해서 단순화 과정이 적용된다 간섭작용을 무시하기 위한, : x

축으로의 무한성 가정과 유체 움직임에서 중요한 작용을 하는 변수들만

을 선택 이 단순화 과정을 통해 얻어지는 방정식은 레일리 수 라는. ‘ ’

대류현상의 임계값을 기술한다.41) 이제 유체가 구체적으로 어떤 운동을

하느냐를 살펴보아야 될 단계이고 이를 위해서는 네이버 스토크 방정식, -

이 필요로 된다.42) 네이버 스토크 방정식은 단위부피당 들어오고 나가는- ,

충격량의 총합은 단위부피에 작용하는 무게에 대한 힘과 같다는 의미이,

다.

이 방정식에 유체운동에 영향을 주는 온도의 비선형적 섭동과 온도에,

따른 밀도의 관계 43)를 고려하고 다시 대류에 영향을 미치는 세 가지,

39) 참조Lorenz, E. N. (1963), Jung, A. (2002), p. 1-17 .

40) 레일리 베나르드 흐름의 가장 간단한 예는 냄비에 물을 끓이는 경우이다- .

41)   


여기서, 는 밀도에 대한 열확산계수 온도의 변화에 대한(

밀도의 변화를 나타내는 값), 는 유체의 초기 밀도,  는 전체적인 열

확산계수, 는 점성도 계수이다.

42) 
   ∙∇   

  ∇;
   ∙∇  

  ∇,

참조Hilborn, R. C. (1994), pp. 605-618 .

43) 밀도는 온도에 따라 변하므로 온도의 변화가 비선형이라면 밀도도 비선형,

적일 것이다 그런데 비선형적 온도변화에 따른 비선형적인 밀도변화까지.

고려하는 일은 아주 복잡하기 때문에 밀도를 온도와 선형적 관계에 있다,
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중요한 힘인 중력 온도 압력과의 관계를 고려하여 주 의 방정식을 정, , 35

리하면 결국 우리가 원하는 비선형 네이버 스토크 방정식을 얻게 된다, - :


  ∙∇   

 
 ′      ∇;


  ∙   

 
 ′   ∇여기서-(3.1), 는 운동 점성력이다.

이렇게 우리가 원하는 네이버 스토크 방정식을 얻었음에도 불구하고- ,

이 방정식의 실제적인 계산가능성 은 또 다른 문제이다 이 아름다운 방‘ ’ .

정식을 실제적으로 계산가능하게 만들기 위해서 단순화과정이 필요로 된

다 우선은 변수들의 단위를 없애는 차원없앰 을. ‘ Dimensionless’ 44) 하고,

이 차원이 없어진 방정식을 풀기 위해 유체의 흐름에 대한 모든 정보를

가지고 있다고 가정되는 흐름함수‘ Streamfunction  를 도입하(x,z,t)’

여 이를 편미분함으로서 얻은 속도 성분을 대입함으로서 유체 흐름에 대,

한 모든 정보를 담고 있다고 전제하는 방정식이 얻어진다.45)

이제 이 방정식을 풀기 위해서 푸리에 전개를 사용한다 그런데 여기, .

서 문제는 푸리에 전개가 기본적으로 무한급수를 상정한다는데 있다 무.

한급수에 해당되는 무한 개수의 계수들 구하기는 것은 불가능하다 따라.

서 이 푸리에 급수를 어디에서 잘라야 하는가 하는 문제가 발생된다 이‘ ’ .

문제는 통상적으로 갈러킨 단절 로 해결한다 갈러‘ Galerkin Truncation’ .

킨 단절은 차 이상의 차수를 갖는 항은 에 가깝게 근접한다는 것을 보1 0

임으로서 일차항 이상의 항은 무시하는 방법이다, 46) 이러한 갈러킨 단절.

고 이를 부시네스크 근사 라 한다 이 근사는, ‘ boussinesq Approximation’ .

주 의 네이버 스토크 방정식의 밀도계수인35 를 근사값인 로 대치함으

로 이루어진다.

44) 이 과정을 통해 우리는 변수의 단위에 신경 쓰지 않고 모든 변수들을 동일

하게 취급할 수 있는 장점을 가지게 된다.

45) 
 


 ∇
 


 

 
  

 
 

 


  =


  ∇

46) 나머지 항들은 차수가 차 이상이므로 에 가까운 값이 나오기에 고려할2 0

필요가 없어진다.
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을 거친 함수는 다음과 같이 단순해진다.

                    ;

                            -(3.2). 이 방정식에서

함수는 유체의 입자 운동에 대한 것이고,  는 단위부피의 입자적 운(t)

동에서의 시간적 측면을 나타낸 것이고,     ∙    는 대류를 형성하

는 단위의 주기적 측면을 나타낸 것으로 일차항만을 고려했다 그런데. ,

여기서 좀 이상해 보이는 점이 있다 앞에서 말하기를 갈러킨 단절은 차. 1

항만을 고려한다고 했는데 방정식 의, (3.2) 에 대한 온도 변화의 함수는

차항까지 고려했다 그 이유는 대류현상이 비선형적 이라는데 근거하2 . ‘ ’

고 있다. 은 로렌츠 모델의 맨 밑바닥과 위층의 온도 변화에 대한 함

수이고 따라서 선형적이다 그런데 온도 변화가 단순히 선형적이라면 대.

류현상은 설명될 수 없다 따라서 아무리 단순화를 한다고 하더라도 근본.

성질인 대류현상을 설명하지 못하는 모델은 의미가 없으므로 대류현상을,

기술하기 위해서는 필연적으로 비선형성을 기술하는 이차항 가 도입되

어야만 하는 것이다 즉.  는 대류가 일어나는 가장 중요한 원인인 선형

적 온도 변화에 대한 비선형적 온도차를 나타내는 항이다 이 방정식을.

풀면 우리가 원하는 최후의 방정식이 얻어진다, :


       

             ;               ,

  
      -(3.3)

이 방정식은 공간적 특성을 기술하는 항은 없고 시간에 대한 측면만을,

기술하고 있다 즉 대류현상에서의 공간적 상황은 상쇄되고 시간적 측면.

만으로 기술하였음을 알 수 있다 이 방정식 을. (3.3)     ,

        으로 치환하면 일반적으로 알려진 로렌츠 방정식이,

얻어진다:

               여기서-(3 .4), p는

프린들 수 와 연관된 계수이고P rand tl n um ber ,

      
  이고 ,      

  
이다 . 이 로렌츠 방정식에서,

변수 는 대류 속도에 비례하는 변수이고 는 상승운동과 하강운동을X , Y
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하는 흐름사이의 온도 변화에 대한 비례를 나타내고 는 대류가 일어났, Z

을 때 선형적 구조를 갖는 수직온도차와의 차이를 나타내는 것이다 이, .

를 통해서 비선형적 성질을 나타내는 항이 라는 사실이 그리고 는Z , Z T
에 대한 기술이므로 앞서 말한 대로 갈러틴 절단에서 왜 이차항인, T를
고려해야만 하는지에 대해서 이제 이해할 수 있게 된다 이렇게 로렌츠.

모델에서 대류현상을 설명해주는 가장 중요한 요인은 비선형성 이다‘ ’ .

로렌츠 모델의 존재론3. 1. 2.

지금까지 로렌츠 모델을 기술하는 방법론 중심으로 살펴보았다 그러면.

이제 이 방법론에 대응되는 존재론을 살펴보자 이를 위해서 물리학의 가.

장 중요한 관심사 중에 하나인 예측성 에서 시작하자 거의 대다수의 비‘ ’ .

선형적 현상은 고전역학적 관점에서 볼 때 분석적인 정확한 예측은, ( ) ‘ ’

불가능하다 그럼에도 불구하고 비선형적 현상도 그 속에서 일반성 을. , ‘ ’

찾을 수 있고 이러한 일반성을 바탕으로 예측이 가능하다 로렌츠 모델, .

도 마찬가지이다 로렌츠 모델은 해당 자연현상이 언제 어떠한 경우에. , “

이 현상이 나타나는가 에 대해 답을 한다 이를 위해서 로렌츠 방정식의” .

안정성 분석 을 해보면 방정식 를 풀면‘ ’ ( (3.4 ),47)

(i)        ,

(ii)   ±        ±           이라는 개의3

고정점이 주어지고 값의 변화에 따른 고정점의 안정성 분석을 해보, r

자48) 단순성을 위해서 값에 대해서만 고려해 보자 일. X . 1< r <1.346

47) 이를 위해서 첫째로 로렌츠 방정식에 해가 있다는 조건이 만족되어야만,

한다 이를 수학적으로 표현하면 해가 무한대로 발산하지 않는다는 것이고. ,

물리학적으로 표현하면 이모형의 원점에서 떨어진 어떤 곳에서도 속도장이

어디에서나 원점을 향한다는 의미이다 참조. Berg, P. (1987), pp. 301-312 .

48) 안정성 분석이란 가 각각 아주 조금 변했을 때의 움직임을 보는 것X,Y,Z

이므로 계산상의 단순성을 위해서 비선형항을 무시하고 선형항만을 가지, ,

고 계산해 보자.

그러면,           가 된다 여기서 비선형,

항인 항은 무시하고Z ,      이기에 결국 안정성 문제는,
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때는 안정적 끌개가 나타난다 인 경우에는 안정적인 갈, . 1< r < 13.926

래치기가 나타나게 된다 그리고 인 경우부터 전체적인 갈래치. r =13.926

기가 형성되고 인 경우에 약간의 불안정성이 나타, 13.926 < r < 24.74

나며 인 경우 전형적인 카오스적 현상을 보여주는 말안장 끌, r > 24.74

개 인 로렌츠 끌개 가 나타난다Sattelfokus ‘ ’ 49).

이렇게 의 값에 따라 다양한 전체적인 운동의 모습이 달라진다 이 현r .

상을 개체중심적 환원론에 대응되는 고전역학적 방법론에 입각하여 해석

하면 다음과 같을 것이다 시스템의 성질은 경우에 따라서는 환원을 통: (

한 개체의 성질로 설명되어야 하므로 전도 현상이나 대류 현상 등의 현) ,

상도 개체가 가지고 있는 운동에너지로 환원되어야만 한다 따라서 값에. r

따른 다양한 현상들도 마찬가지로 개체 각각의 운동에너지의 변화에 의

해서 설명되어야만 할 것이다 그런데 안정적 끌개 안정. , ∙불안정 갈래치

기라는 현상들은 앞서 방법론에서도 살펴보았듯이 개체로의 환원이라- -

는 선형적 관계로만은 설명되어지지 않는다 즉 환원론적 방법론에 입각.

한 설명은 전도 현상이나 대류 현상 모두를 일률적으로 개체의 운동에너

지로 환원시키기에 그 차이점을 설명할 수 없게 될 것이다 그런데 안정.

성 분석의 방법에서 보듯이 로렌츠 모델은 임계변수 의 값에 따라서 전r

체 시스템의 운동현상이 달라진다 이 상태를 개체 단위로 설명하면 각. ,

각의 개체는 증가된 운동에너지만을 가질 뿐이다 따라서 그 증가된 운동.

에너지가 어떻게 다양한 대류현상을 발생시키느냐에 대해서는 설명할 수

없다 이렇게 비선형적 구조가 원인이 되어 발생되는 새로운 질서라는 창.

발적 현상은 개체 중심의 환원적 방법론으로는 설명이 안 되는 존재론적

구조를 갖는다.

지금까지 고전역학의 방법론과 대비되는 예로서 유체 운동을 살펴보았

다 그런데 이 유체운동에서도 비록 고전역학에서 행해지는 것만큼은. -

아니더라도 전체 질서를 규정하는 데 있어 개별 구성요소들의 성질 예- ‘ (

를 찾는 고유값 문제가 된다.

49) 로렌츠 끌개가 카오스적 현상을 보여준다는 증거로서 축의 최대값을 잡, Z

아서 로지스틱 사상을 만들면 그 기울기가 보다 큰 전형적인 불안정성을1

보인다.
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를 들면 단위부피의 점성력 안정성 등 이 고려되어야만 한다 비록 전체, )’ .

적 대류 운동을 발생시키는 가장 중요한 요소가 비선형적인 상호작용임

에도 불구하고 그 상호작용을 야기 시키는 원동력으로서 단위부피의 성,

질이 무시되어 질 수 없다 이러한 의미에서 로렌츠 모델을 통한 개체. ‘

중심적 환원론 에 대한 전적인 부정은 힘들다 이러한 한계성에도 불구하’ .

고 개체 중심적 환원론의 한계성과 그 근거를 보여주기에는 충분하다고

생각하다.

다음으로 환원론적인 개체의 성질이 거의 무시되고 관계성 이 시스템, ‘ ’

의 본질을 이루는 복잡계 현상을 살펴보자.

그물망 이론3. 2. 1.

현대과학에서 가장 빠르게 발전하고 있는 분야 중 하나가 생물학이다.

게놈 프로젝트 는 연구에 기울인 시간과 비교하여 놀라울 만한 성과를‘ ’ , ,

거두고 있다 그럼에도 불구하고 유전자에 대한 우리의 지식은 아직은. ,

걸음마 단계이다 현재 게놈 프로젝트에서 부딪친 어려운 고비 중 하나는.

유전자 상호작용의 관계이다.50) 유전자에 대해 많은 것들이 밝혀질수록

유전자들은 개개의 개체를 단위로 하는 단독적인 역할을 수행하기 보다

는 협동 체계로 움직인다는 것이 드러나고 있다 이러한 상호작용의 기전.

을 알기 위해서는 지금까지의 방법론이었던 개개 유전자의 위치에 집중,

한 지도 그리기 는 별 의미가 없다는 사실을 받아들여야만 한다 따라서‘ ’ .

후기 게놈 연구 의 가장 중요한 목표는 살아있는 세포 안에서 발생되는‘ ’

분자들의 전체적인 상호작용의 관계를 밝혀내는 것이다 예를 들어 동일.

한 세포라 할지라도 고립되었을 경우와 다른 세포나 분자들과 상호작용

을 하였을 경우의 그 세포의 기능은 전혀 다르다51) 이러한 기능은 세포.

개개의 특징에 중점을 두는 환원론적 방법으로는 알아낼 수가 없다 대신.

에 세포들 간의 상호작용에 중점을 둔 관계 의 관점에서 그에 대한 규칙‘ ’

50) 존 홀란드 김희봉 옮김( ) (1995), pp. 92-93.

51) 예를 들어 단백질 등등은 세포들 간의 상호작용의 결과이다, DNA, RNA .

Garcia-Ojalvo, J. & Elowitz, M. B. & Strogatz, S. H. (2004), p.

참조10956-10957 .
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을 찾은 것이 현명할 것이다 그물망이론은 이러한 상호작용에 중점을 두.

는 이론이다.

그물망이론 의 구조3. 2. 2. (network Theory) 52)

단백질과 단백질의 관계 단백질과 핵산의 관계 또는 단백질과 물질대,

사의 관계 등과 같이 구성요소들의 상호 연관이 본질을 이루는 시스템에

서는 구성요소들의 특수성을 무시하고 일괄적으로 추상화시키는 것이 연,

관관계를 탐구하는데 편리하다53) 따라서 연구자들은 각각의 요소들을 일.

괄적으로 노드로 요소들 간의 상호관계를 맺는 길을 링크라 전제하고, ,

링크들이 보여주는 전체적인 관계 그물망 를 살펴보는데 중점을 둔다 이( ) .

연구는 따라서 개체의 성질을 시스템의 본질로 받아들이는 고전역학과는

상반되는 전제를 받아들인다 이러한 전제 하에서는 각각의 노드가 다른. ,

노드들과 어떤 관계를 맺고 있는가를 알아보는 것이 해당 시스템을 기술

하기 위한 가장 중요한 요점이기 때문에 일차적으로 노드들 간의 연결, ,

성 또는 를 알아봐야 한다 그리고 그 연결성(connectivity degree) k . k

는 링크가 가역적인가 비가역적인가에 따라서 확률적 연결성 분포

(degree distribution)54)가 달라진다.55) 이 연결성 확률 분포의 모습을

통해서 해당 시스템의 대상들 간의 관계가 규정되어 진다 예를 들어 이, . ,

연결성 확률 분포가 가우스 분포를 이루면 이 시스템에서 대상들의 관계

는 최대값 이 값을 갖는 노드를 허브 라 한다 이 없는 순수한 무작위( Hub )

의 링크들로 이루어져 있다는 사실을 알 수 있고 반대로 최대값을 갖는,

멱함수의 분포(P(k) ~ K를 이루면 이 그물망은 몇몇의 허브를 갖는)

52) 본 단원은 Nature Review 에 수록된2004, Feb. vol.5 Albert-Lèszlè

에 의해서 씌어진 논문Barabèsi, Zoltèn N. Oltvai "Network Biology:

을 중심으로 전개해Understanding the Cell's Functional Organizatin"

나가겠다.

53) 참조Holland, J. H. (1998), p. 188. .

54) 연결성 분포(degree distribution) P(k는) k의 노드 수 N(k를 전체 노)

드 수 으로 나눈 값이다N ; P(k) = N(k)/N
55) 자세한 논의는 를 참조하Barabèsi, A. L. & Oltvai, Z. N. (2004), p. 102.

기 바란다.
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구조임을 알 수 있다 즉 이 구조는 몇몇의 노드들이 집중적인 링크를 갖.

는 프리 스케일 구조 를 가지고 있음을 알 수 있다 이 계에서- free-scale .

는 따라서 노드들 관계 전체를 관통하는 보편적인 척도는 존재하지 않게

된다.

이러한 프리 스케일의 구조는 대부분의 생물 현상이 보여주는 구조이-

기 때문에 좀더 세부적인 분석을 할 필요가 있다 프리 스케일을 갖는 생. -

물 구조에서는 최대값을 구할 수 있는 분포가 아니기 때문에 아주 많은,

연결성을 갖는 세포는 중요한 역할을 할 것이고 반대로 연결성이 낮은,

세포는 상대적으로 중요하지 않는 역할을 하게 될 것이다 이것의 척도로.

멱함수 분포인 의 지수인 의 값이 작을수록 그 노드는 허브로서의 중K r

요한 역할을 하고 이 보다 큰 경우는 그 노드는 다른 세포와 많은 연, r 3

결 관계를 가지지 못하기 때문에 중요한 역할을 하지 못하고 이 와, r 2 3

사이인 경우는 노드 사이의 위계순서가 생겨나며 이 인 경우 가장 큰, r 2

허브가 존재하게 된다 그리고 일반적으로 프리 스케일 그물망의 구조는. -

이 보다 적은 경우에 발생된다 이렇게 의 값을 찾아봄으로써 해당 시r 3 . r

스템에서의 대상들의 관계 구조가 분명하게 드러나게 된다.56) 무작위 그

물망인 경우에 개의 노드들은 각각 의 확률 로 무작위로N p ( N(N-1)/2)

연결되어 있고 그 노드들의 연결성의 분포는 푸아송 분포를 나타낸다, .

반면에 프리 스케일 경우에는 의 연결성을 갖는 노드들의 확률은- , k P(k)

~ K이라는 멱함수의 모습을 나타낸다.

이러한 관계의 위상학적 구조에 따른 관계 외에도 생물학적 현상은 필,

요한 노드까지 도달하는 거리의 정보도 필요하다 두 노드 사이를 연결해.

주는 길은 여러 가지가 있을 수 있고 일반적으로 가장 짧은 길이 중요성

을 더 갖는다 이 경우 가역적 노드들과 비가역적 노드들 간의 연결 길이.

는 다르게 될 것이다 이와 같은 예는 뇌의 특정 부분의 손상에 의한 그.

부분의 기능상실과 같은 현상을 설명해 주는 경우로 사용될 수 있다 따.

라서 어떤 노드가 어떤 노드와 연결되어 있는가는 해당 현상의 발현에

중요한 역할을 한다 그물망에서 노드 가 와 연결되어 있고 가 와. A B , B C

연결되어 있다면 가 와 직접적으로 연결되어 있을 그렇지 않을 경우, A C

56) 참조Barabèsi, A. L & Oltvai, Z. N. (2004), p. 105 .



나 정 민66

보다 높고 이 집단 계수는 다음과 같이 나타낸다, ; C= 2n 여기/k(k-1);

서 n는 노드 와 연관된 주위의 노드 중에서 서로 연관된 노드 수를i

말한다 이상과 같은 해당 시스템의 구조적 특성을 알려주는 여러 개념.

중에서 특히 중요한 것이 함수 이다 이 함수는 노드 와 연결된 모C(k) . k

든 노드의 평균 집단 계수로 정의된다 그리고 모든 실제적인 그물망에서.

그 관계는, C(k) ~ k 의 관계로 나타난다 이는 이 그물망이 위계적.

순서를 가지고 있음을 나타내는 징표이다 정리는 하자면 평균 결합도. ,

평균 거리 그리고 평균 집단 계수 는 노드와 링크의 수<k>, <L> <C>

에 의존한다 그러나 함수 와 는 그물망의 크기에 의존하지 않. P(k) C(k)

는 해당 그물망의 구조적 특성을 나타내어 주므로 그물망들 간의 구조

비교에 유용한 개념이다.

지금까지의 논의를 바탕으로 하여 생물 현상의 기초를 이루는 물질 대,

사에 대해서 살펴보자 예를 들어 마그네슘. , (Mg 에 의존적인 효소의)

촉매반응에 그물망이론을 적용하면 각각의 대사물질은 노드로 추상화하,

되고 물질간의 상호작용은 링크가 될 것이다 단순화를 위해 물질대사의, . ,

부산물 예를 들어 을 무시하고 그 대사에 중요하게 관여하는 물질( ATP) ,

들 간의 관계를 살펴보면57) 들어오는 관계나 나가는 관계 모두 프리 스, -

케일의 구조를 갖는다 이렇게 복잡하게만 보이는 생물학적 현상도 관. ‘

계 라는 개념을 도입한 복잡계적 방법론을 사용하면 그 존재론적 구조’ ,

는 단순한 수학적 구조를 보여준다 그리고 이러한 비선형적 방법론에 의.

해 파악된 대상의 존재성은 당연히 개체론으로는 환원이 안 되는 전일론

적 존재성을 뛸 수밖에 없다.

결론4.
지금까지의 논의를 정리하면 현대과학의 모태인 근대과학은 분석적이,

고 경험적인 방법론을 통해 자연현상을 탐구한다 그리고 근대과학을 이.

57) 같은 책 참조, p. 103 .
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루는 고전역학은 뉴턴역학을 시작으로 하여 해밀턴 역학으로까지 발전하

였지만 그 근본적인 방법론은 변하지 않았다 고전역학의 방법론이 통용, .

되는 대상은 앞서 논의했듯이 전제 에너지가 불변하는 보존계이다 이, , .

불변하는 에너지를 해밀턴 역학은 해밀토니안을 통해 기술한다 이는 뉴.

턴의 운동법칙에 대한 일반화이다 이러한 뉴턴역학의 일반화라는 성질은.

이체문제의 풀이과정에서 두 힘 또는 변수 의 선형적 결합이라는 방식으( )

로 해밀턴 역학에 나타난다 이러한 의미에서 작은 원인은 작은 결과를. ‘ ,

큰 원인은 큰 결과를 발생시킨다 는 기계론적 세계상이 가지는 성질이 지’

지된다 그리고 해밀턴 역학은 에너지를 시스템의 본질이라고 규정하고.

있으며 이 에너지는 해밀턴 역학에서 정준변환을 통해 운동에너지로 나,

타낸다 이 과정에서 상호작용을 나타내는 위치에너지는 상쇄된다 이렇게. .

정준변환을 통한 해밀토니안은 오직 요소들 자체가 갖는 운동에너지에

의해서만 규정된다 이러한 변환은 해밀턴 역학의 적분가능성을 충족시키.

는데 불가결한 조건이다 이 모든 조건들 두 힘의 선형적 결합 정준변환. - , ,

적분가능성 이 한데 어울려서 위상공간 상의 한 점은 그 시간에서 나타- , ‘

날 수 있는 모든 정보를 완전하게 가지고 있다 는 명제가 성립하며 이 명’

제가 바로 전체는 부분들의 합 이라는 개체중심의 환원론에 대한 근거이‘ ’

다 우리는 앞에서 이러한 개체 중심적 존재론에 대한 예로서 이체문제를.

살펴보았다 물론 만유인력법칙은 현상적 수준에서 상호작용 을 기술한다. ‘ ’ .

그런데 이 만유인력의 법칙을 푸는데 사용되는 해밀턴 역학은 이 상호작

용하는 위치에너지의 상쇄를 요구한다 즉 이체문제가 일체문제로 환원이. ,

되어야만 만유인력법칙은 풀려진다 이 과정에서 행해지는 정준변환을 통.

해 얻어지는 새로운 해밀토니안은 개체의 성질로 환원되는 운동량에만

의존한다 그리고 이러한 정분변환을 거친 방정식을 질량중심이나 또. m1

는 의 상대운동으로 변환하면 우리가 구하고자 했던 의 운동m2 , m1, m2

방정식에 필요한 적분상수를 얻을 수 있다 이 일체문제라는 변환을 통해.

얻어진 운동방정식은 더 이상 만유인력이라는 상호작용의 힘을 기술하고

있지 않다 이 방정식은 단지 해당 시간에 해당 물체의 속도와 위치를. ,

나타내며 이 성질들의 합이 전체 시스템을 구성한다는 것을 보여주고 있,

다 이렇게 되어 만유인력이라는 상호작용의 힘을 받는 이체계의 움직임. ,
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은 해당 대상의 시간에 대한 속도나 위치를 알게 되면 완벽하게 결정되,

는 기계론적 존재성에 대응하게 된다.

그런데 이렇게 전체 시스템의 본질이 개체로 환원되는 대상 외에도 전

체 시스템의 본질이 개체로 환원되지 않고 개체들의 상호작용에 놓여있,

는 자연현상도 있다 이에 대한 예로서 우리는 삼체문제 로렌츠모델 그. ,

리고 그물망이론을 살펴보았다 삼체문제에서는 이미 푸앵카레가 간파했. ,

듯이 적절한 정준변환이 존재하지 않는 상호작용을 본질로 갖는 시스템,

이다 그리고 당연히 이 시스템은 개체 중심적 환원론적 방법론을 사용하.

는 해밀턴 역학으로는 기술되지 않는다 그 다음으로 나오는 로렌츠 모델.

도 이 모델의 본질인 대류현상은 미시적인 구성단위들이 갖는 성질에 의

해서만은 설명되지 못한다 물론 거시적 대류현상을 일으키는데 미시적.

단위의 구성요소들 자체가 내적으로 가지고 있는 운동에너지가 한편으로

는 중요한 원인으로 작용함을 부정할 수는 없지만 이 구성요소들의 운동,

에너지만으로는 대류현상은 설명되지 못한다 마지막으로 우리는 다층적.

구조를 갖는 현상을 살펴보았다 이 에서는 단적으로 말하자SOC . SCO ,

면 홀로 존재하는 구성요소는 의미가 없다 구성요소들의 성질에 대한, .

규정은 말할 나위도 없고 존재성 또한 다른 구성요소들 간의 관계 에 의, ‘ ’

해서 발생된다 이렇게 과학이론들 중에는 개체의 성질 로 그 본질이 환. ‘ ’

원 가능한 시스템과 그러한 환원이 가능하지 않은 개체들 간의 상호작용‘ ’

을 본질로 하는 시스템이 있다 이 두 시스템을 탐구하는 방법론은 차이.

가 있으며 이러한 방법론의 차이가 해당 시스템의 존재론적 성질을 어떻,

게 규정하는가를 우리는 본론 부분에서 살펴보았다.

이렇게 개개 과학이론들과 그 방법론을 통해 이해 된 자연현상은 서론‘ ’

에서도 말했듯이 인식주관과는 독립적으로 존재하는 또는 존재한다고 전(

제하는 객관적인 대상 그 자체 와는 일정의 간격 이 있을) (Ding an sich) ‘ ’

것이다 그런데 이 간격을 인식하기 위해서는 대상 그 자체에 대한 인식.

이 필수 불가결하지만 이 인식은 우리의 한계를 넘어서 있기 때문에, ‘ ’ ,

이에 대한 어떠한 논의도 의미가 없을 것이다 이러한 우리의 한계를 넘.

어선 논의 대신에 본 논문은 주관의 활동인 이해 가 개입된 과학이론이‘ ’

제시하는 대상에 대해서 탐구해 보았다 그 결과는 해당 이론마다 시스. ,



복잡성 과학의 새로운 패러다임과 전일론적 존재론 69

템의 본질이라 여기는 성질을 실제적으로 구하기 위해서는 법칙 외에도‘ ’

방법론이 필수적이고 이 방법론에 의해서 사용되어진 방식에 의해서 그,

대상의 본질의 존재방식이 드러난다 는 의미에서 방법론과 존재론은 본질‘ ’

적인 연관관계를 맺고 있다는 사실을 알아보았다 결과로 드러난 방법론.

과존재론의관계는 변수들의선형적관계 적분가능성 정준변환 이라, ‘ ’, ‘ ’, ‘ ’

는 방법론을 사용하게 되면 시스템의 성질은 개체로 환원된다 따라서, .

이 방법론에 의해서 제시된 대상은 개체중심의 환원론 이라는 존재론적‘ ’

성질을 가지게 된다 반면에 이러한 방법론이 적용되지 못하거나 부분적. ‘

으로만 적용되는 시스템의 본질은 개체 안에 내제된 성질이 아닌 개체’ ,

들 사이의 관계 에 놓여있다 이 관계성을 본질로 하는 시스템은 전일론‘ ’ .

적 존재성을 갖는다.

자연은 복잡하며 복잡성이란 정의 상 이질성 을 포함, ‘ (Heterogeneity)’

한다 따라서 자연 속에는 여러 가지 다양한 성질을 본질로 하는 현상들.

이 존재한다 그렇기 때문에 그러한 다양한 현상들에 대한 다양한 과학이.

론들이 있다 이런 다양한 과학이론들 중에서도 구성요소들 간의 관계 를. ‘ ’

본질이라고 주장하는 과학이론의 등장은 흥미롭게도 현대의 철학적 사조

와 동일한 맥락을 가지고 있다 현대 철학적 사조는 특히 해석학적 입장. (

에서 보면 주관과 객관이라는 근대적인 소박한 이분법적 대립구조를 부),

정하고 주관과 객관의 상호작용인 지평융합, ‘ ’58)을 통한 세계의 이해를 강

조하고 있다 해석학에서 주관은 근대적 의미에서 말하는 단지 주관과. ,

분리된 객관을 읽어내는 수동적인 역학을 하는데 그치지 않고59) 세계를,

이루어내는존재론적행위작용인 의미 존재성 이해 라는능동적활‘ ’, ‘ ’, ‘ ’

동을 한다 따라서 세계는 주관과 객관의 이분법적 틀 속에 있는 고정된.

존재가 아니라 주관과 객관의 끝임 없는 상호작용에 의해서 계속적으로

움직이는 존재성을 가지게 된다 이러한 세계 내의 존재들의 상호작용이.

라는 지평의 융합 을 이루어지는 행위를 해석학은 유비적으로 만남 이라‘ ’ ‘ ’

고 한다 이러한 의미에서 해석학과 전일론 은 주관과 객관의 이분법적. ‘ ’

58) 참조Gadamer, H, G., Wahrheit und Methode, Tèbingen, 1986. p. 307 .

59) 물론 근대에도 이성의 능동성을 주장하는 관념론도 존재하였지만 과학의,

입장에서 논의를 진행하기 위해서 경험주의에 국한하겠다.
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구분 또는 이러한 구분에 근거한 환원론적 개체중심을 지양하고 이 경계,

가 허물어진 바로 그 곳에서 관계성‘ (Verhèltnis60) 이라는 새로운 존재론)’

적 성질이 발생되며 이것이 존재의 본질 이라는 시각으로 세계를 이해하, ‘ ’

려는 시도라 할 수 있다.61)

60) 본 논문에서 사용한 관계성 이라는 단어는 해석학에서 사용되‘ (Verhèltnis)’

는 개념과 일맥상통하는 부분이 있다 해석학에서 세계를 해석하는 중심.

틀인 해석학적 순환 에서 보면 세계에 대한‘ (Der hermeneutische Zirkel)' ,

이해의 바탕에는 개체와 전체의 순환론적 관계성이 그 전제가 된다고 한

다 따라서 개체는 전체와의 교류 속에서 그 존재성이 지지된다. .

61) 참조Briggs, J. & Peat, F. D. (2004), pp. 74-75 .
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The New Paradigm of the Complex

Theory and the holistic Ontology

Jong-Min, Na

The everything, which is discerned by us, depends on

our Understand ing-S tructure . In tha t respect our

Understand ing-Structure is the precondition of the scientific

knowledge. Scientific knowledge reflects not 'Ding an Sich' but

our Understanding-Structure of the Nature. It is impossible, to

directly receive objective knowledge from Nature direct. So

science is knowledge, which is interpreted by us. Our

Understanding-Structure is the precondition of knowledge.

In this sense every scientific knowledge is the cooperation with

the Ding an Sich and subjective Understanding-Structure.

According to this precondition, every scientific theory shows, how

we understand the nature. This means that the world, which

every scientific theory describes, is not stable. The scientific

world-view changes according to our scientific understanding-structure.

In this Article I show this change with the help of the

methodology in the scientific theories. The methodology, which

uses each scientific theory, is the understanding-structure, through

which each scientific theory comprehends the natural phenomena.

So the methodology of each scientific theory shows the structure

of the object, which each scientific theory researches. According

to the methode the each scientific theory interpret her object. So

the scientific theory has her own Nature View according to her

methodology: Newton's mechanic is known as Mechanism, which
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is based on the individual oriented reductional Methodology. On

the contrary, the complex theory shows the holistic Ontology,

which is based on the non-linear Methodology.

[Key Words][Key Words][Key Words][Key Words] Scientific Theories, Newton's Mechanics, The

Complex Theory, Lorenz' Model, Network theory,

individual oriented Reductionism, Connection.


